INTRODUCTION TO AIRCRAFT NOISE ACTIVITIES AT ICAO CAEP WITH ONGOING AND FUTURE CONTRIBUTIONS FROM DLR

09. - 10.03.20235. ICANA ConferenceGoethe-Universität, Frankfurt

Lothar Bertsch

Helicopter Department, Institute of Aerodynamics and Flow Technology, Göttingen

content

part 1: ICAO & CAEP

- ICAO
- CAEP
 - aircraft noise activities
 - DLR contribution

• part 2: DLR aircraft noise simulation

- multi-level simulation approach
- single event noise prediction
- application example: contribution to dual stringency discussion
- summary & conclusion
- appendix: ICAO nominated technical experts from DLR

International Civil Aviation Organization (ICAO)

- United Nations Organziation runs specialized agencies
- specialized agency: ICAO (est. 1944)
 - member states: 193 national governments
 - supports diplomacy and cooperation in the context of international air transport (based on "Chicago Convention")
 - promotes safe & orderly global air transport
 - establishes & maintains regulations and goals: Standards and Recommended Practices (SARPs)
 - important: proposals/amendments require approval/ratification by each member state

World Health Organization © Reference: About ICAO

- ICAO is comprised of assembly, council, and secretariat
 - assembly (all member states): review & overview of all ICAO tasks (also budget); resolutions give direction to council & sets priorities for ICAO; ultimately approves & incorporates amendments to "Chicago Convention"; meets all three years
 - council (assembly elects 36 member states: limited to politicians): proposes, maintains, and adopts SARPs; coordinates technical work
 - **secretariat**: administration / documentation / organization (e.g., meetings)

DLR

ICAO

organization and workflow (tasks):

© Reference: Committee on Aviation Environmental Protection (CAEP) (icao.int)

Committee on Aviation Environmental Protection (CAEP)

- CAEP to address environmental ICAO goals (since 1983)
 - Imit or reduce <u>climate change and aviation emissions</u>
 - Imit or reduce adverse impact on <u>local air quality</u>
 - Iimit or reduce <u>aircraft noise</u>
- specific tasks:
 - conduct studies, formulate new policies & report recommendations
 - comprehensive assessment: from local / airport to global level
- table of measures:
 - aircraft technology
 - operational improvement
 - sustainable aviation fuels
 - market-based measures (CORSIA)
- approx. 600 participants in CAEP (year 2021)
 - 31 members w. nominated technical experts (not limited)
 - 21 observers (6 states and 15 organizations) & invited organizations (e.g. industry groups)

- organization of CAEP in groups (dedicated to specific disciplines and topics)
- members / observers join group(s); technical experts are assigned to group(s)
- coordinated by steering group (SG)

CAEP

collects/reviews reports & approves recommendations (convenes once per year)

CAEP: a/c noise activities

© Reference: Committee on Aviation Environmental Protection (CAEP) (icao.int)

330.0 major achievements: 320.0 Annex 16 310.0 Environe.g. regulations for Chapter 2 300.0 🕈 7 EPNdB aircraft noise certification protection EPNdB Chapter 2 290.0 (Annex 16, Volume I) Chapter 3 280.0 Chapter 4 270.0 Chapter 14 current CAEP activities: 260.0 Chapter 2 – CAN 1973 250.0 1 - aircraft noise modeling Chapter 3 – CAN 1977 Chapter 4 - CAEP/5 - 2001 2 - noise trends and technology goals 240.0 Chapter 14 - CAEP/9 -2013 230.0

1.0

10.0

MTOM (tonnes)

100.0

1000.0

3 - community engagement

mental

- 4 new aircraft concepts, e.g. advanced air mobility and drones
- 5 supersonic transport (SST) aircraft noise standards development
- maintenance of public available <u>ICAO Noise Data Bank (NoiseDB)</u>
- documentation of results / findings: <u>ICAO Environmental Reports</u>

CAEP: DLR contribution to a/c noise activities

- 2 noise trends & technology goals (MDG, FESG)
- 3 community engagement (WG1)
- 4 new aircraft concepts, e.g. advanced air mobility and drones (WG1, MDG)
- 5 supersonic transport (SST) aircraft noise standards development (**WG1**, **MDG**)

- 2 technology development, traffic forecast, scenario techn. introduction
- 3 noise impact research (e.g. auralization)
- 4 measurements & simulation (especially: engine installation effects)
- 5 SST: a/c design, LTO noise and sonic boom

content

part 1: ICAO & CAEP

- ICAO
- CAEP
 - aircraft noise activities
 - DLR contribution

part 2: DLR aircraft noise simulation

- multi-level simulation approach
- single event noise prediction
- application example: contribution to dual stringency discussion

summary & conclusion

appendix: ICAO nominated technical experts from DLR

requirement: full assessment of ICAO balanced approach

$$L_{DEN} = 10 \cdot log10 \begin{pmatrix} 1 \\ T \\ i=1 \end{pmatrix} g_i \cdot 10^{\frac{SEL_i}{10}} \\ \text{e reduce number of flyover events} \\ \text{traffic routing (distribution) / land development} \\ \text{e avoid/reduce flights during "sensitive" times} \\ \text{e night flight curfew} \\ \text{flights curfew} \\ \text{fligh$$

ICAO balanced approach captured by <u>multi-level simulation</u>

© Reference: <u>https://doi.org/10.3390/en11020429</u>

- essential simulation capability: connect level 1 3
 - predict overall a/c noise (immission is relevant!)
 - capture different a/c, engines, flight procedures, and technology upgrades (ICAO Balanced Approach)
- DLR tool PANAM
 - componential (source by source)
 - captures relevant sources & effects
 - (semi-) empirical and analytical methods
 - parametric: geometry & operation
 - simulation output:
 - detailed emission assessment (component level)
 - detailed immission assessment (component and aircraft level):
 - single observers and large arrays
 - common noise descriptors (L_{A,max}, SEL, EPNL ...)

 output of componential & parametric simulation

REF" (DLR ATRA) approach

© Reference: DLR and EASA study; presented to ICAO as CAEP/13_WG1/4_DSSG/4_IP05

pter

DLR aircraft noise simulation

- application: toward an integrated CO₂ / noise stringency
 - impact of ultra-high-bypass-ratio engine (CO₂ and noise)
 - technology may reach TRL8 between 2025 and 2030
 - CO₂: input from high-fidelity simulation (DLR tool GasTurb)

eng	арр	fly	over	sideline		cum.		margin ch. 14	sideline	cer cha
"old gen"	97.8	88.5		93.3		279	9.6	-7.1	2700 m	4
"current gen"	91.0	81.7		89.9		262	2.5	10.0	2600 m	14
"next gen"	90.2	78	.4	87.7		256	6.3	16.2	2600 m	14
eng	3000 km missio		n LTO							
	fuel [k	g]	CO2	[kg]	fuel [uel [kg]		02 [kg]		
"old gen"	9206	206 290		5	1032		3262			
"current gen"	7354	23217		7	710		2243			
"next gen"	6361 2		20083		614		1940			

- additional noise reduction possible (other DLR presentations)
 - airframe (M. Fischer) / engine (L. Enghardt) / novel aircraft (R. Schmidt & M. Fischer)

content

part 1: ICAO & CAEP

- ICAO
- CAEP
 - aircraft noise activities
 - DLR contribution

• part 2: DLR aircraft noise simulation

- multi-level simulation approach
- single event noise prediction
- application example: contribution to dual stringency discussion

summary & conclusion

appendix: ICAO nominated technical experts from DLR

summary & conclusion

 detailed presentation of single event aircraft noise prediction as essential capability (links components to overall immission / scenario)

Questions?

contact:

18

Dr.-Ing. Lothar Bertsch, +49 551 709 2473, <u>lothar.bertsch@dlr.de</u>, Institute of Aerodynamics and Flow Technology, DLR Göttingen

appendix nominated technical experts from DLR (CAEP/13)

name	DLR institute	expertise	group
Berghof, Ralf *	Air Transport and Airport Research, Köln	traffic forecast, scenarios	MDG, FESG
Bertsch, Lothar	Aerodynamics and Flow Technology, Göttingen	acoustics (overall a/c), SST (LTO)	MDG, WG 1
Delfs, Jan	Aerodyn. and Flow Technology, Braunschweig	acoustics (airframe, installation)	WG 1
<u>Gelhausen, Marc</u> *	Air Transport and Airport Research, Köln	traffic forecast, scenarios	FESG
<u>Grewe, Volker</u>	Atmospheric Physics, Oberpfaffenhofen	climate effects	ISG
Jaron, Robert	Propulsion Technology, Berlin	acoustics (engine), SST (LTO)	WG 1
Kirz, Jochen	Aerodyn. and Flow Technology, Braunschweig	SST (design, boom)	WG 1
<u>Liebhardt, Bernd</u>	Air Transportation Systems, Hamburg	flight performance, CO2 emissions	WG 3
Linke, Florian	Air Transportation Systems, Hamburg	air transport, flight operations	LTAG
Plohr, Martin *	Propulsion Technology, Köln	engine, CO2 emissions	WG 3
Wicke, Kai	Maintenance, Repair, and Overhaul, Hamburg	product lifecycle management	MDG, FESG
Zill, Thomas *	System Architectures in Aeronautics	aircraft design	MDG

*) experienced / long-time CAEP participant

backup

 output of componential & parametric simulation

> "HWB1 GTF": DLR design w. Ultra- High-Bypass engines (fig.: M. Mößner, DLR, 2023)

