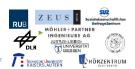
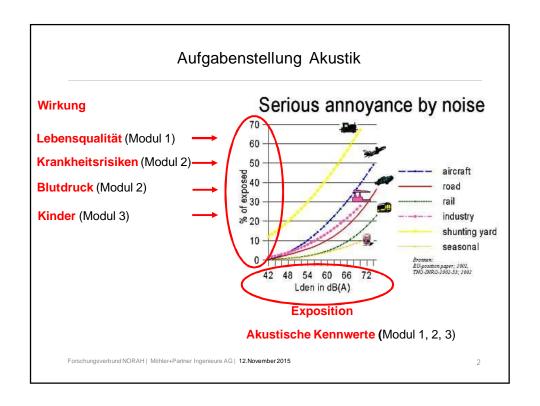
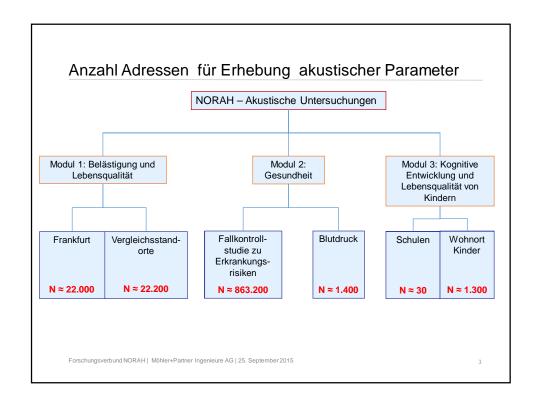
NORAH


Verkehrslärmwirkungen im Flughafenumfeld Erfassung der Verkehrsgeräuschexposition


ICANA Health 2015
3. Internationale Konferenz Aktiver Schallschutz


12./13.11.2015 Frankfurt am Main

Forschungsverbund NORAH | Möhler+Partner Ingenieure AG | 12.November 2015

Bearbeitungsteam Akustik

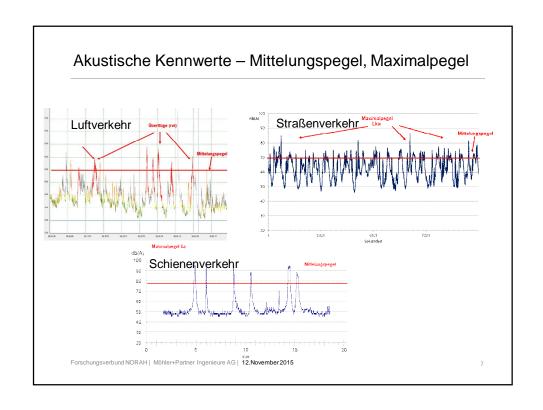
Möhler + Partner Ingenieure AG, München Ulrich Möhler, Manfred Liepert, Maximilian Mühlbacher, Martin Nunberger, Markus Klein, Alfred Beronius

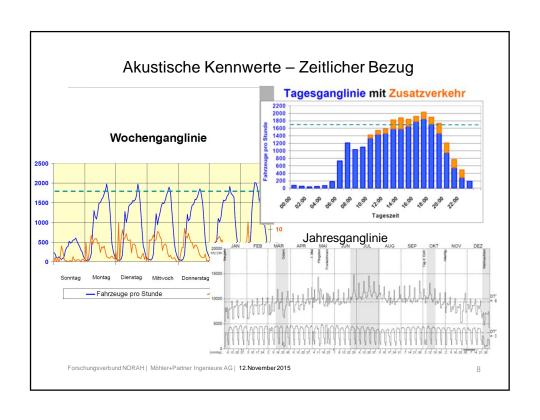
SoundPlan GmbH, Backnang Gerd Braunstein, Michael Gille, Jochen Schaal

Avia Consult, Strausberg Rüdiger Bartel

Interne Qualitätssicherung Berthold Vogelsang, Alois Heiß

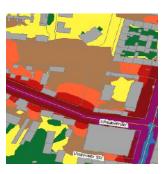
Externe Qualitätssicherung Kerstin Giering, Georg Thomann

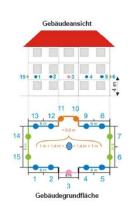

Forschungsverbund NORAH | Möhler+Partner Ingenieure AG | 12.November 2015


.

Vorgehensweise Ermittlung der Lärmbelastung

- 1. Festlegung der erforderlichen akustischen Kennwerte
- 2. Festlegung eines geeigneten akustischen Berechnungsverfahrens
- 3. Erstellung eines akustischen Modells
- 4. Durchführung der Lärmberechnungen für jedes Modul für alle Probanden
- 5. Plausibilitätskontrolle der Berechnungsdaten
- 6. Übergabe der Daten an die Bearbeiter der beteiligten Module
- 7. Abschätzung Aussagesicherheit
- 8. Dokumentation


Forschungsverbund NORAH | Möhler+Partner Ingenieure AG | 12.November 2015



Akustische Kennwerte – Lage des Immissionsortes

- Außenpegel vor dem Gebäude
- Innenraumpegel

Forschungsverbund NORAH | Möhler+Partner Ingenieure AG | 12.November 2015

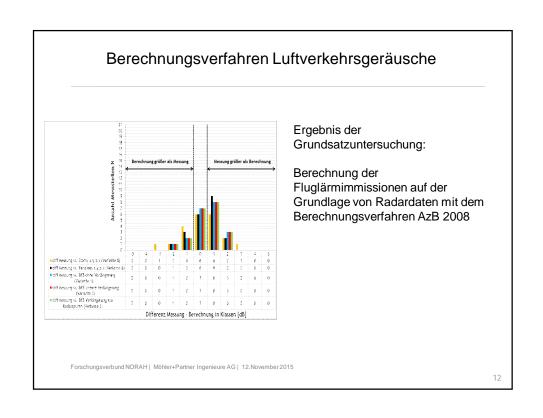
9

Akustische Kennwerte

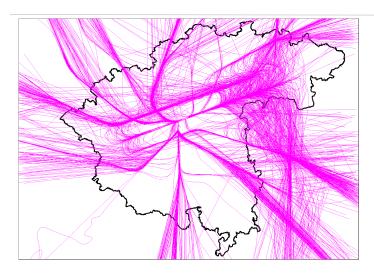
Ermittlung der individuellen Lärmbelastung der Untersuchungsteilnehmer

getrennt für Luft-, Straßen- und Schienenverkehrsgeräusche

getrennt für einzelne Fassadenseiten


als Mittelungspegel und Maximalpegel

differenziert für unterschiedliche **Tageszeiten** und **Wochentage**, **Monate**


rückwirkend vom Jahr 1996 bis zum Jahr 2014

Forschungsverbund NORAH | Möhler+Partner Ingenieure AG | 12.November 2015

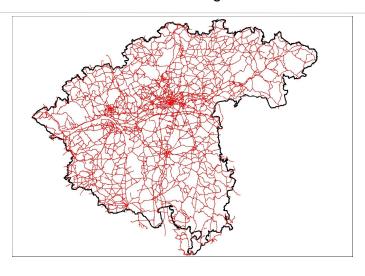
Berechnungsverfahren Luftverkehrsgeräusche Konflikt: DES Berechnungen decken Untersuchungsgebiet nicht ausreichend ab Modifiziertes Berechnungsverfahren erforderlich braun eingekreist die zu kurzen Abflugstrecken

Berechnung Luftverkehrsgeräusche über Radardaten

Forschungsverbund NORAH | Möhler+Partner Ingenieure AG | 12.November 2015

13

Berechnungsverfahren Straßenverkehrsgeräusche


Vorläufige Berechnungsmethode für den Umgebungslärm an Straßen, (VBUS), 2006

- Verkehrsmengendaten aus VISUM-Modell für das Jahr 2005, sowie Auswertung von Zählstellen für die Jahre 1995 bis 2010
- Zulässige Geschwindigkeiten
- Zuschläge für Steigungen
- Zuschläge für Fahrbahnoberflächen

Abschätzung des Maximalpegels durch Straßenverkehr über Vorbeifahrtpegel von LKW, abgeleitet aus RLS - 90

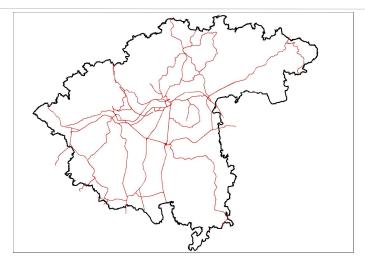
Forschungsverbund NORAH | Möhler+Partner Ingenieure AG | 12.November 2015

Straßennetz Untersuchungsraum Frankfurt

Forschungsverbund NORAH | Möhler+Partner Ingenieure AG | 12.November 2015

1.5

Berechnungsverfahren Schienenverkehrsgeräusche


Vorläufige Berechnungsmethode für den Umgebungslärm an Schienenwegen, (VBUSch), 2006

- Verkehrsmengendaten der DB AG getrennt nach den Zuggattungen Reisezüge, klotzgebremste Güterzüge, Nahverkehrszüge
- Streckenhöchstgeschwindigkeit
- Brückenzuschläge
- Fahrbahnart = Schotterbett Betonschwellen

Abschätzung des Maximalpegels durch Schienenverkehr über Vorbeifahrtpegel von Güterzügen, abgeleitet aus Schall 03

Forschungsverbund NORAH | Möhler+Partner Ingenieure AG | 12.November 2015

Schienennetz Untersuchungsraum Frankfurt

Forschungsverbund NORAH | Möhler+Partner Ingenieure AG 12.November 2015

17

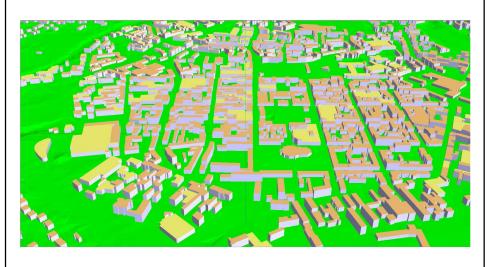
Akustische Parameter für den Innenraum

- Erhebung der bautechnischen Kennwerte der Außenbauteile
- Auswertung der Erhebungsdaten
- Ermittlung des Schalldämm Maßes der Außenbauteile
- Ermittlung des Innenraumpegels auf der Grundlage des Außenpegels und der Fensterstellung

Geschlossenes Fenster:

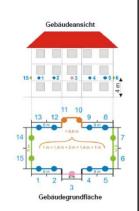
Unterschied Innen- Außenpegel ca. 30 dB

Gekipptes Fenster:


Unterschied Innen- Außenpegel ca. 15 dB

Forschungsverbund NORAH | Möhler+Partner Ingenieure AG, 12.November 2015

Akustisches Gebäudemodell



Forschungsverbund NORAH | Möhler+Partner Ingenieure AG | 2 12. November 2015

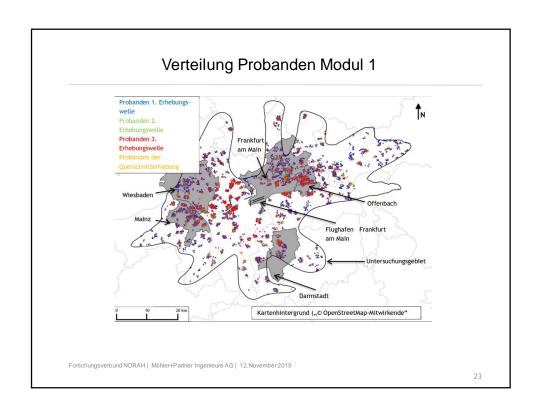
10

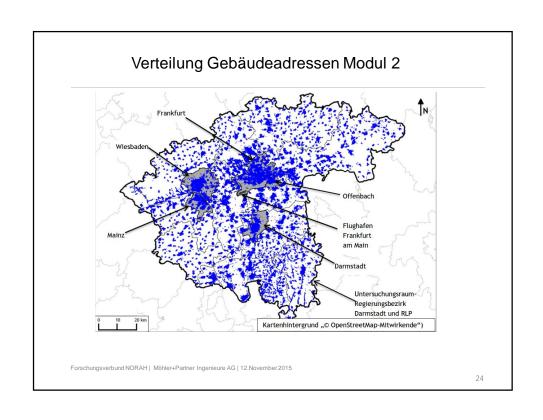
Immissionsorte

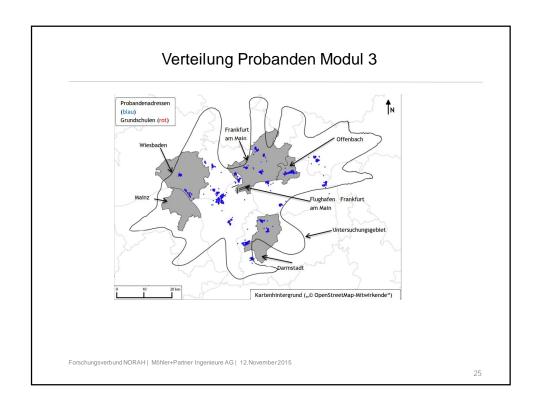
- Immissionsort außen vor dem Gebäude in Höhe von 4,0 m über Gelände; Bei Luftverkehrsgeräuschen keine Abschirmwirkung durch das Gebäude
- Bei Straßen- und Schienenverkehrsgeräuschen Bestimmung des Gebäudepegels aus dem jeweils höchsten Fassadenpegel
- Zusätzlich Innenraumpegel in Modul 2 und Modul 3 bei geöffnetem und geschlossenem Fenster aus Schalldämm – Maß der Außenbauteile

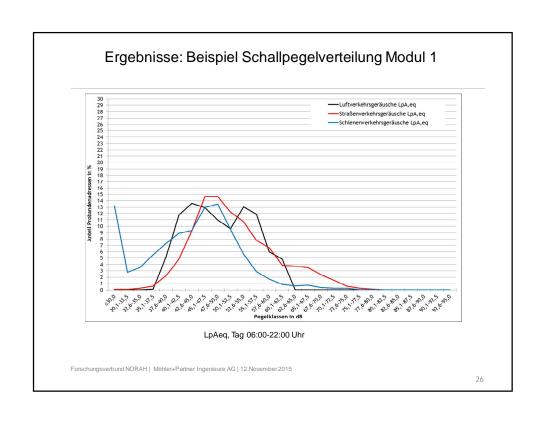
Forschungsverbund NORAH | Möhler+Partner Ingenieure AG | 12.November 2015

Akustische Kennwerte (Auszug)

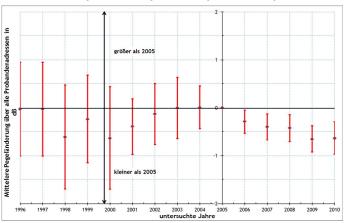

Flugverkehrs-, Straßenverkehrs- und Schienenverkehrsgeräusche über alle Module										
		Modul 1	Mod	ul 2	Modul 3					
Akustischer Kennwert	Zeitbereiche	Jahrespegel	Referenzj. 2005	Historisch 1997-2010	Wohnstandort	Schulen Außenp.	Schulen Innenp.			
LpA,eq	00-24 Uhr	X	Х							
	06-18 Uhr	X	X		Х	X	X			
	06-22 Uhr	X	X	X	Х	X				
	18-22 Uhr	X	Χ		X	X				
	22-06 Uhr	X	Х	Х	X	X				
LDEN	00-24 Uhr	Χ	X		X					
LpAF,max		Χ	Х	X	X	Х	Х			


Forschungsverbund NORAH | Möhler+Partner Ingenieure AG | 12.November 2015


21


Dokumentation Datenbank Modul 2 - Ausschnitt

	34 0 50.	7 42.1	83	50.8	42.2	83 5	50,9 42,3	83	51,1	42.5	83	51	42,4	83	51	
4106759554801			84,9	52.2	43,7		52,3 43.8	84.9	52,5	44	84,9	52.4	43,9		52.4	
4106774554550			91	61	53,6		1.1 53.7	91	61.3	53.9	91	61.2	53,8		61.2	
4106979		_					25.0	78.3	44.7	36.1	78.3	44.6	36		44.6	
4106930 1	Bldg_geoID	RCHTG_/	A LMFT	A97	LMFNA97	LMAXFTA	49,2	91,8	56,7	49,4	91,8	56,6	49,3	91,8	56,6	
4106940 N7	410673155479434	0		50,7	42,1		83 28	62,7	36,8	28,2	62,7	36,7	28,1	62,7	36,7	
4106952		-					37.9	81,6	46,7	38,1	81,6	46,6	38	81,6	46,6	
	410675955480100	S		52,1	43,6		34,9 27,5	61,7	36,3	27,7	61,7	36,2	27,6	61,7	36,2	
4106958 119	410677455455026	N		60,9	53,5		91 47,9	95,6	56,6	48,1	95,6	56,5	48		56,5	
4106969							33,3	74,1	42,1	33,5	74,1	42	33,4		42	
	410687855478951	NO		44,3	35,7		78,3 46,4	91	55,2	46,6	91	55,1	46,5		55,1	
4107020 11	410693055427679	N		56,3	49		91.8 53,4	90,5	61	53,6	90,5	60,9	53,5		60,9	
4107084							31,2	69,9	39,9	31,4	69,9	39,8	31,3		39,8	
	410694055477716	NO		36,4	27,8		52, 7 53,3	89,8	60,8	53,5	89,8	60,7	53,4		60,7	
4107156	410695255480015	S		46.3	37,7		31,6	89,9	51,8	43,2	89,9	51,7	43,1		51,7	
4107203		7					42,0	92,2	57,2	50	92,2	57,1	49,9		57,1	
	410695855477336	SO		35,9	27,3		51,7 53,6	90,8	61,2	53,8	90,8	61,1	53,7		61,1	
4107265	410695855479768	N		56,2	47,7		95,6	83	48,5	41,2 48,4	83	48,4	41,1		48,4	
4107203							1998	92,7 89.5	56,9 54,9	46,4	92,7 89,5	56,8 54.8	48,3 46,3		56,8 54,8	
4107336 .16	410696955478854	NW		41,7	33,1		74,1 46,2	79.1	46.4	37.9	79.1	46,3	37.8		46,3	
	410701755479490	w		54,8	46,2		91 41.4	84.4	50.1	41.6	84.4	50	41.5		50	
4107050							50.0	90.8	61.3	54	90.8	61.2	53.9		61.2	
4107382 .18	410702055455058	N		60,6	53,2		90,5	80,1	38.7	31,5	80,1	38,6	31,4		38,6	
4107487554790	51 SW 5	45,5	90	54.1	45,6	90 5	54,2 45,7	90	54,4	45,9	90	54.3	45,8		54,3	
4107492554274			83,5	48.3	41		18.4 41.1	83.5	48,6	41.3	83,5	48.5	41.2		48,5	
4107562554785	37 SO 52,	9 44.4	90.7	53	44.5	90.7 5	3.1 44.6	90,7	53.3	44.8	90.7	53.2	44,7	90,7	53,2	
4107660554788			83,9	52	43,5	83,9 5	32,1 43,6	83,9	52,3	43,8	83,9	52,2	43,7		52,2	
4107774554275	97 0 55,	48,2	94,7	55,6	48,3	94,7 5	55,7 48,4	94.7	55,9	48,6	94,7	55,8	48,5	94,7	55,8	
4107799554786	76 SW 51,	43	84,7	51,7	43,1	84,7 5	51,8 43,2	84,7	52	43,4	84,7	51,9	43,3	84,7	51,9	
4107827554782	11 NO 52,	3 43,7	85,4	52,4	43,8	85,4 5	52,5 43,9	85,4	52,7	44,1	85,4	52,6	44	85,4	52,6	
4107856554785	60 SW 53,	45,1	88,3	53,7	45,2	88,3 5	33,8 45,3	88,3	54	45,5	88,3	53,9	45,4	88,3	53,9	
	48 N 56,	49,2	91,2	56,5	49,3	91,2 5	6,6 49,4	91,2	56,8	49,6	91,2	56,7	49,5	91,2	56,7	
4107963554275	91 S 55,	7 48,5	89,3	55,8	48,6	89,3 5	55,9 48,7	89,3	56,1	48,9	89,3	56	48,8	89,3	56	
		50,1	91,8	57,4	50,2	91,8	57,5 50,3	91,8	57,7	50,5	91,8	57,6	50,4	91,8	57,6	
4107963554275 4108014554276	26 N 57,		86,4	52,4	43,9		52,5 44	86,4	52,7	44,2	86,4	52,6	44,1		52,6	
4107963554275 4108014554276 4108094554275 4108108554783	21 SW 52,					93.9 5	8,6 51,4	93,9	58,8	51,6	93,9	58,7	51,5		58,7	
4107963554275 4108014554276 4108094554275 4108108554783 4108173554275	21 SW 52, 19 N 58,	1 51,2	93,9	58,5	51,3						87.7		44,4	87,7	51,7	
4107963554275 4108014554276 4108094554275 4108108554783 4108173554275 4108249554274	21 SW 52, 19 N 58, 04 N 51,	1 51,2 1 44,1	87,7	51,5	44,2	87,7	51,6 44,3	87,7	51,8	44,5		51,7				
4107963554275 4108014554276 4108094554275 4108108554783 4108173554275	21 SW 52, 19 N 58, 04 N 51, 76 S 58,	1 51,2 1 44,1 1 50,9				87,7 5 93,4 5	51,6 44,3 58,3 51,1 59,2 52	87,7 93,4 95.5	51,8 58,5 59.4	51,3 52.2	93,4 95.5	51, / 58, 4	51,2 52.1		51,7 58,4 59.3	



Ergebnisse: Veränderung Fluglärm 1997 bis 2010

Zeitliche Änderung der Luftverkehrsgeräusche bezogen auf 2005 im tags 06-22 Uhr

Mittelwerte mit Standardabweichung für ca. 800.000 Probandenadressen

Forschungsverbund NORAH | Möhler+Partner Ingenieure AG | 12.November 2015

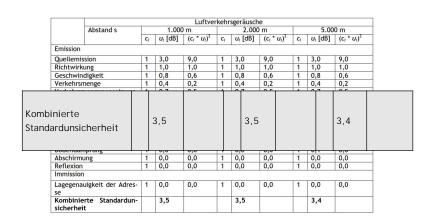
27

Einschätzung der Aussagesicherheit

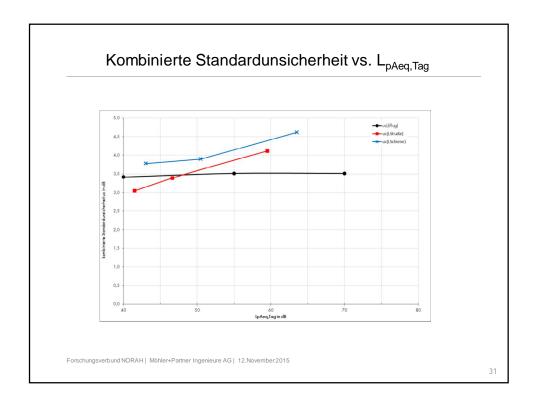
Grundlage DIN SPEC 45660-1 "Leitfaden zum Umgang mit der Unsicherheit in der Akustik und Schwingungstechnik –Teil 1: Unsicherheit akustischer Kenngrößen"

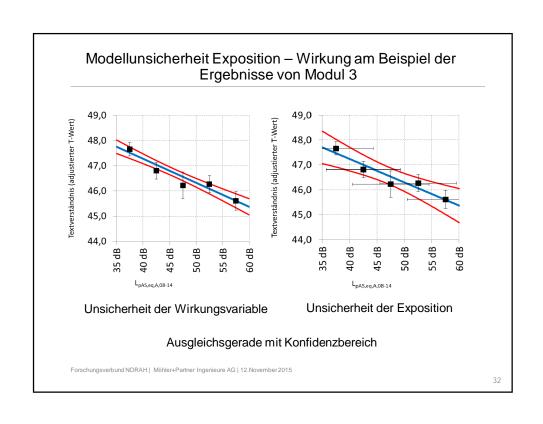
- Getrennte Ermittlung der Unsicherheiten je Geräuschquellenart für Emission,
 Transmission und Immission in Abhängigkeit vom Abstand
- Bildung Gesamtunsicherheit je Geräuschquellenart in Abhängigkeit von der Höhe des berechneten Schallpegels
- Betrachtung der Modellunsicherheit Exposition Wirkung am Beispiel der Ergebnisse von Modul 3

Forschungsverbund NORAH | Möhler+Partner Ingenieure AG | 12.November 2015


Parameter Aussagesicherheit

Emission	Emissionspegel, Leistungssetting, Richtwirkung, Geschwindigkeit, Verkehrsmenge, Verkehrszusammensetzung, Fahrbahnbelag, Schienenzustand
Transmission	Abstandsmaß, Atmosphärische Dämpfung, Boden- und Meteorologiedämpfung, Abschirmung, Reflexionen
Immission	Schalldämmung Außenbauteile, Lage der maßgeblichen Fenster am Gebäude, Schalldämmung Außenbauteile


Forschungsverbund NORAH | Möhler+Partner Ingenieure AG | 12.November 2015


29

Kombinierte Standardunsicherheit Luftverkehrsgeräusche

Forschungsverbund NORAH | Möhler+Partner Ingenieure AG | 12.November 2015

Ergebnis Unsicherheitsbetrachtung

- Unsicherheit der Schätzparameter für die Ausgleichsgerade erhöht sich (im Fall der Steigung von 11 % auf 25%)
- Die Parameter der Ausgleichsgeraden ändern sich nur geringfügig
- Die Ausgleichsgerade unter Berücksichtigung der Unsicherheiten in X-Richtung liegt innerhalb des Konfidenzintervalls
- Eine Anpassung der Ausgleichsgeraden ist nicht erforderlich

Forschungsverbund NORAH | Möhler+Partner Ingenieure AG | 12.November 2015

33

Fazit Akustik

- Entwicklung Berechnungsverfahren für Luftverkehrsgeräusche auf der Grundlage individueller Radarspuren
- Abschätzverfahren für die Ermittlung von Maximalpegeln für Straßen- und Schienenverkehrsgeräusche
- Beschreibung der Aussagesicherheit der akustischen Kennwerte
- Der außerordentlich gute Zusammenhang (hohe Korrelationskoeffizienten) zwischen Exposition und Wirkung von ca. 0,4 gegenüber üblicherweise 0,2 ist zumindest teilweise auf die genaue Ermittlung der akustischen Belastung zurückzuführen

Forschungsverbund NORAH | Möhler+Partner Ingenieure AG 12.November 2015

Zukünftige Herausforderungen Akustik

- Einführung eines genormten Berechnungsverfahrens für Luftverkehrsgeräusche auf der Grundlage von Radardaten
- Entwicklung von Berechnungsverfahren des Maximalpegels an Straßen- und Schienenwegen
- Realitätsnahe Ermittlung der Lärmbelastung innerhalb von Räumen

Forschungsverbund NORAH | Möhler+Partner Ingenieure AG 02. November 2015

35

Vielen Dank!

Forschungsverbund NORAH | Möhler+Partner Ingenieure AG | 02.November 2015