

Measures and Instruments of Active Aircraft Noise Abatement

(Maßnahmen und Instrumente Des Aktiven Schallschutzes beim Fluglärm)

Ullrich Isermann
German Aerospace Center - DLR
Institute of Aerodynamics and Flow Technology

DLR aircraft noise research

Aircraft Noise Mitigation and Management

Measures of ICAO's "Balanced Approach"

- Reduction of noise at source
- Land-use planning and management
- Noise abatement operational procedures
- Operating restrictions (ultima ratio)

Prerequisite 1: Knowledge on noise effects

- Relationships between noise exposition and effects
- Noise descriptors and noise indices

Prerequisite 2: Modelling capabilities

- ₱ Aircraft noise sources
- Operational procedures and air traffic systems
- # Behaviour of socio-economic systems

Reduction of noise at the source

Launching of new aircraft technologies (schematically)

DLR engine noise research

Simulation:

Computational Fluid Dynamics
Computational Aero Acoustics

Testing methods & experiments

Research on short-/mid-term measures - engine retrofitting

Spliceless inlet liner

Hotstream liner

> U. Isermann: MIDAS > ICANA 2016, Frankfurt/Main, 24-25.11.2016 • Chart 7

Vortex generator concepts

Simulation:

Computational Fluid Dynamics
Computational Aero Acoustics

Testing methods & experiments

Research on short-/mid-term measures – aeroacoustic retrofitting

Landing gear Fairings

> U. Isermann: MIDAS > ICANA 2016, Frankfurt/Main, 24-25.11.2016 • Chart 9

Porous side flap side edges

Spoiler splitter plates

The vortex generator – an example of technical realization

Experimental version (DLR project "Quiet Air Traffic", 2004)

Final version (Supercraft, 2014)

- Retrofit of aircraft in service is possible
- Generator is installed on new aircraft
- Noise measurements at Frankfurt Airport attest noise reduction potential

Installed version

Noise abatement flight procedures

Vertical optimization

by variation of:

- > Aircraft altitude
- Aircraft speed
- Engine power setting
- Configuration (flaps, slats, gear)

Horizontal optimization

by variation of:

- Flight track design ("minimal noise routing")
- Bundling / spreading of tracks

How to depart as quiet as possible?

- > Reduce engine power (decrease sound emission)
 - ⇒ less climb performance
 - \Rightarrow less acceleration performance
- > Fly as high as possible (increase sound propagation distance)
 - \Rightarrow decrease acceleration
- > Fly as fast as possible (decrease noise duration)
 - \Rightarrow decrease rate of climb

Rule: Source noise reduction is the most efficient measure!

Effect of steep climb decreases with increasing lateral distance!

Approach goal: Reduce speed and altitude

How to approach as quiet as possible?

Fly idle as long as possible (low engine noise)

> Fly high as long as possible (increase sound propagation distance)

- \Rightarrow steep final approach \Rightarrow fast
- \Rightarrow need to decelerate \Rightarrow flaps/spoilers \Rightarrow drag
- > Fly as slow as possible (low aerodynamic noise)
 - \Rightarrow shallow glide angle \Rightarrow low altitude
 - \Rightarrow if too slow \Rightarrow power increase needed
- > Fly with low drag (low aerodynamic noise)

Rule: Source noise reduction is the most efficient measure!

Fly idle as long as possible an deploy flaps and gear as late as possible!

Noise abatement flight procedures are always a compromise ...

Noise reduction potential

- > For departures mainly spatial re-distribution of noise
- For approaches additional "real" noise reduction potential (byoptimal utilization of gravity with minimized drag)
- d Optimized procedure design has to account for the local building structure

Limiting requirements

- Don't violate safety
- Avoid disturbances of ATM
- > Implement procedures excactly
 - Technical factors (aircraft equipment)
 - Human factors (pilot / tower)

of special importance for approaches

MIDAS - Low Noise Advisory System (LNAS)

Pilot advisory system to increase the vertical precision of approach profiles

> U. Isermann: MIDAS > ICANA 2016. Frankfurt/Main. 24-25.11.2016 • Chart 15

MIDAS – two approaches of combined optimization

3D optimization of routes & procedures

Rules Loop Noise Compare Cost-Function Store as Optimum

Coupling of fast-time air traffic simulation with suitable noise model

Challenge: Find the suitable noise model w.r.t.

- processing speed
- data amount and availability
- model accuracy

Measures of land-use planning and noise management

Optimized land-use

- Noise protection zones
- Rules for urban land-use planning

Financial instruments

- Incentives to use quiet aicraft (e.g. noise related landing fees)
- Compensation payment for residents
- Real estate purchase programs

Passive noise protection

- Sound insulation
- Construction bans

Communication

- Noise monitoring und information
- Complaint management

Noise related operating restrictions

> Flight bans

- during noise-sensitive periods (morning, evening, night)
- for noisy aircraft

Movement contingents

- for overall traffic
- during noise-sensitive periods only
- for noisy aircraft only

Noise contingents

- Area allocation (areas of reference noise contours)
- "Noise volume" limitation (noise quota point systems)
- Noise effect related quotas (Frankfurter Tag-/Nacht-Index, Zürcher Index)

MIDAS – Work package on regulatory measures

How to find additional criteria to evaluate aircraft noise effects more comprehensively?

- Build a comprehensive system model (method of system dynamics)
 - include feedback between areas
 - account for time lags between causes and effects
 - use causal directional relationships only
- Insert different regulatory noise abatement measures in model
- **Identify key variables** for system behaviour ⇒ **potential evaluation criteria**

U. Isermann: MIDAS > ICANA 2016, Frankfurt/Main, 24-25.11.2016 • Chart 19

MIDAS - Work package on communication

Population affected

by vehicle noise in 2015 (source: UBA)

day evening night noise index > 65 dB(A) ■ night noise index > 55 dB(A)

Population annoyed

by vehicle noise in 2012/14 (source: UBA)

2014

Press articles

on vehicle noise

■ Ø monthly test day June-Nov. 2016

Aircraft noise communication is over-proportionately present, i.e. more intensely discussed than other vehicle noise.

Knowledge on aircraft noise effects is fundamental

Example: Annoyance

- Do we really understand this behaviour?
- Do we really understand equivalent sound levels?

Position paper on noise effect research in Germany

> U. Isermann: MIDAS > ICANA 2016, Frankfurt/Main, 24-25.11.2016 • Chart 21

MIDAS - Noise effects on sleep of children (field study)

Cologne/Bonn Airport

First test period (June - October 2016)

- 30 children (15 girls / 15 boys)
- 4 test nights each
- Positive feedback from fchildren & parents

Method: Polysomnography

Adequate noise modeling is essential

From simple models ...

... to noise prediction for complex sound propagation conditions.

Fundamental rules for noise modelling:

- d Choose the appropriate model for a particular task
- Keep it as simple as possible and as exact as necessary
- d Harmonize model and database

"Rubbish in – rubbish out" – the fundamental role of databases

- Primary database types (aircraft specific)
 - Aircraft performance database
 - Aircraft noise database
- Degree of detail limits the noise model structure
- Number of aircraft included limits the field of application
- > Supplementary data (scenario specific)
 - Radar tracks
 - Flight data recorder information
 - Meteo data
 - Topography and obstacles data
- Data should be chosen suitably to the setting of the task (more detailed data should increase reliability of results)

