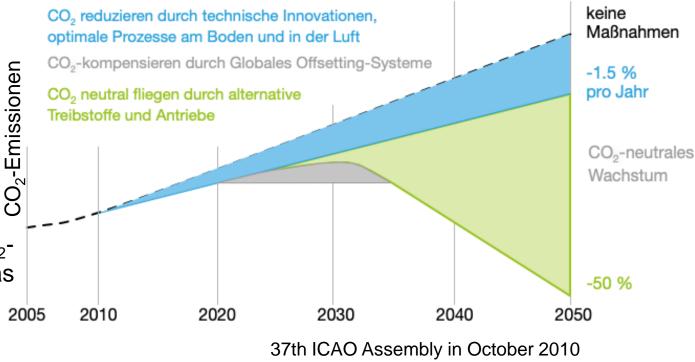
Expertenanhörung Ultrafeinstaub - Möglichkeiten zur Minderung von UFP -

Alternative Treibstoffe in der Luftfahrt

Dr. Tobias Schripp

Institut für Verbrennungstechnik

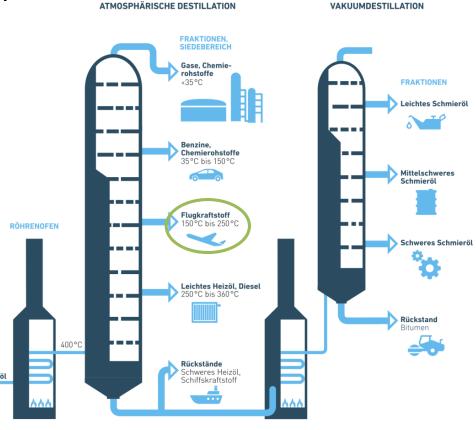
DLR Stuttgart


CO₂-Emissionen der Luftfahrt

- Die Luftfahrt
 - ist verantwortlich für ca. 2 3% der anthropogenen CO₂-Emissionen
 - wächst im Durchschnitt ca. 5% pro Jahr

IATA-Ziele

- Steigerung der Treibstoffeffizienz um 1,5% pro Jahr
- CO₂-neutrales
 Wachstum ab
 2020
- Reduktion der CO₂ Emissionen auf das
 Level von 2005 im 2005


 Jahr 2050

Was sind alternative Treibstoffe?

- Was sind "konventionelle" Treibstoffe?
 - Hergestellt aus Rohöl
 - Destillation in Raffinerie:
 - Fraktion zwischen Benzin und Diesel
 - Bezeichnungen: Jet A, Jet A-1, Jet B, JP-8, ...
 - Zulassung als Luftfahrt-Treibstoff streng geregelt
- Was sind "alternative" Treibstoffe?
 - Erneuerbare Quellen
 - Zulassung als Luftfahrt-Treibstoff streng geregelt

Mineralölwirtschaftsverband e. V. www.MWV.de

Prozesse

 Jatropha
 Abfälle aus der Holzwirtschaft
 Hausmüll

 Algen
 Abfälle aus der Landwirtschaft
 Camellina
 CO₂

- HEFA (Hydrotreated Esters and Fatty Acids)
- ATJ (Alcohol-to-Jet)
- Sun-to-Liquid (Solarthermisches Verfahren)
- Power-to-Liquid
- Hydropyrolyse-Prozesse (z.B. IH²) ...

Synthesegas (Wasserstoff und Kohlenmonoxid)

Raffination und Aufarbeitung

Kerosin

Internationale Aktivitäten

- Paramount Raffinerie (World Energy)
 ca. 10 Mt erneuerbarer Treibstoff pro Jahr (nicht nur Luftfahrt!)
- Fulcrum Bioenergy Plant ca. 0,3 Mt erneuerbarer Treibstoff pro Jahr ab 2020
- Red Rock Biofuels
 ca. 0,5 Mt erneuerbarer Treibstoff pro Jahr
 ab 2020
- Alsaka / Hawai Bioenergy

 Biofueinet

 Advanced Biofuei

 Ba / Solena

 Lufthansa / GEVO

 Airbus / Rostec

 Ba / Solena

 Lufthansa / Solena

 INAF

 GE / D'Arcinoff

 GE / D'Arcinoff

 GOL / Boeing

 GOL / Boeing

 Virgin / Lanzatech

 Arg. national initiative

 Avianca / Byogy

 Cantas / Fuel Producers

 Stakeholders action group

 Projects

 Airines/Fuel Producers

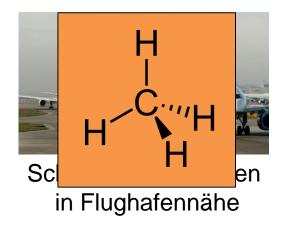
KLM / SkvNRG

Airbus / Air Canada /

Quelle: IATA Sustainable Aviation Fuel Roadmap

- Gevo (Silsbee) produziert ca. 1,2 kt ATJ pro Jahr
- Neste (Finnland), kont. Produktion von 1 Mt erneuerbaren Treibstoff ab 2022... und zahlreiche Forschungs- und Demonstrationsvorhaben!
- ICAO: 6,3 Mill. m³ (5 Mt) in 2025 und 8 Mill. m³ (6,5 Mt) in 2030 für die **Luftfahrt**

Zulassung


Die Beimischung alternativer Treibstoffe zu fossilem Jet A-1 ist streng geregelt

ASTM D7566 "Standard specification for aviation turbine fuels **containing synthesized hydrocarbons**" (Erste Version: 2009)

- ASTM D7566-18 beinhaltet Spezifikationen zur Beimischung von bis zu
 - 50% FT SPK (Fischer-Tropsch hydroprocessed synthesized paraffinic kerosene)
 - 50% HEFA SPK (synthesized paraffinic kerosene from hydroprocessed esters and fatty acids)
 - 10% SIP (synthesized iso-paraffins from hydroprocessed fermeted sugars)
 - 50% SPK/A (synthesized kerosene with aromatics derived by alkylation of light aromatics from non-petroleum sources)
 - 50% ATJ-SPK (Alcohol-to-Jet synthetic paraffinic kerosene)
 - zu konventionellem Treibstoff (Jet A oder Jet A-1)
- Technische Spezifikation: Mindestgehalt an Aromaten in Kerosin ist 8%.

Partikelemissionen

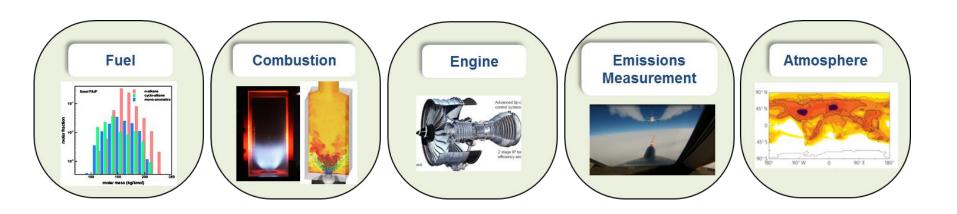
- Die chemische Zusammensetzung des Treibstoffs hat großen Einfluss auf die Partikelemissionen.
- Eine Korrelation zwischen dem Wasserstoffgehalt des Treibstoffs und der emittierten Rußmasse wurde experimentell nachgewiesen.

Umwelteinfluss in großen Höhen Bildung von Zirruswolken

- Die Gesamtpartikelzahl wird zusätzlich durch den Schwefelgehalt beeinflusst.
- Alternative Kraftstoffe reduzieren die Rußmasse <u>ohne</u> die Partikelverteilung zu verändern oder die Freisetzung von NO_x zu erhöhen.

Rußbildung bei alternativen Treibstoffen

"konventionell"


"alternativ"

DLR-Projekt ECLIF Emission and CLimate Impact of alternative Fuels

 Untersuchung der gesamten Kette von der Treibstoffzusammensetzung bis zur Klimawirkung

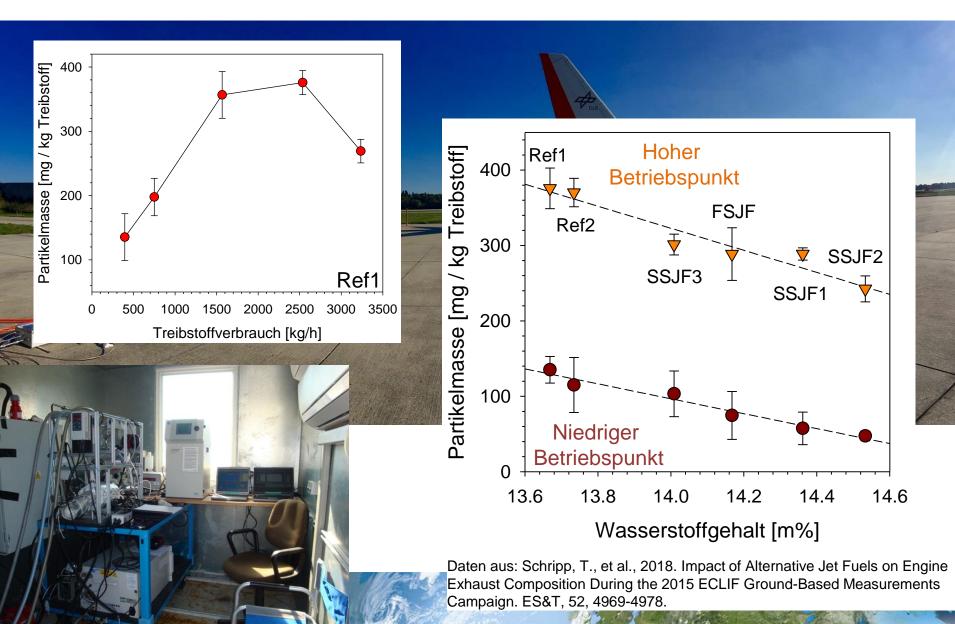
Einfluss alternativer Treibstoffe auf Emissionen & Klima

ECLIF Messkampagnen

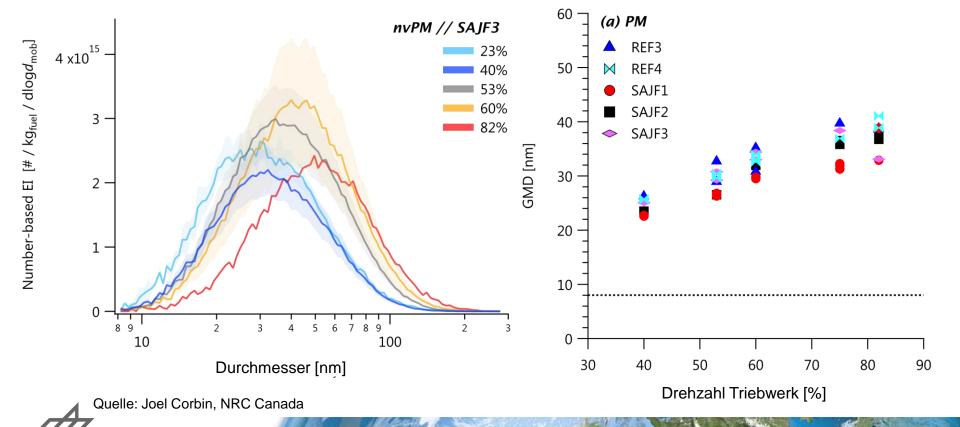
Emissions and CLimate Impact of alternative Fuels

4 alternative Kraftstoffe, 2 Referenzen

September 2015 (Manching)


- A320 (ATRA) als Quelle, Falcon 20-E5 als Messplatform
- 30 h Flug
- 5 h Bodenmessungen

- Januar 2018 (Ramstein)
- 3 alternative Kraftstoffe, 2 Referenzen
- A320 (ATRA) als Quelle, NASA DC-8 als Messplatform
- ca. 45 h Flug
- 9 h Bodenmessungen



Bodenmessungen an A320

Partikelverteilungen

- Die nicht verdampfbaren Partikel (nvPN) haben einen mittleren Durchmesser (GMD) von ca. 20 – 40 nm
- Der Treibstoff hat keinen signifikanten Einfluss auf die Größen der nvPN

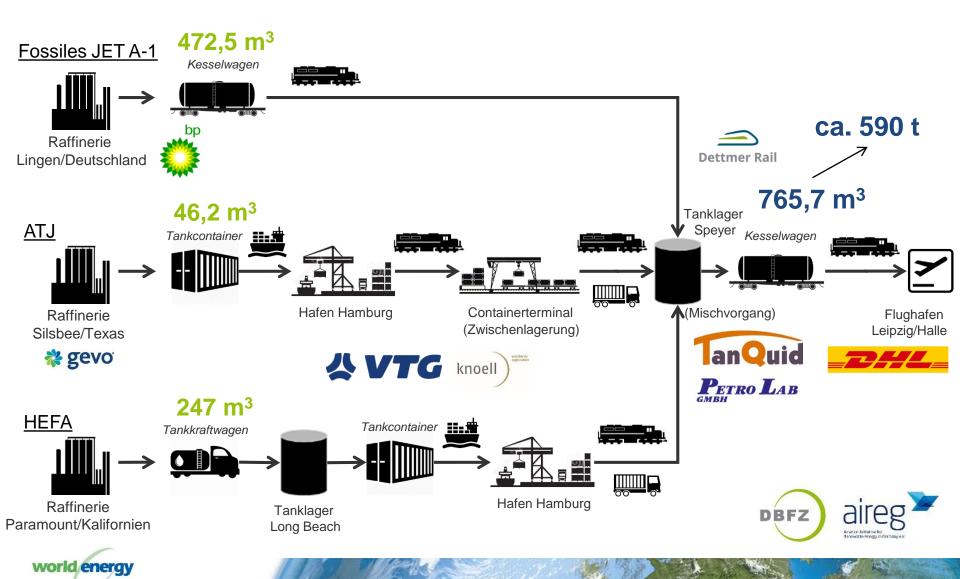
Alternative Kraftstoffe in Deutschland

- Beispielprojekt: Forschungs- und Demonstrationsvorhaben zum Einsatz von erneuerbarem Kerosin am Flughafen Leipzig/Halle (DEMO-SPK)
- Erstellung und Verwendung eines ASTM-konformen "Multiblend" Jet A-1 in einer realen Flughafeninfrastruktur am Flughafen Leipzig / Halle
 - Beschaffung, Transport und Anwendung des Treibstoffs (inkl. LCA, Nachhaltigkeitsanalyse, etc.) auf einem deutschen Flughafen
 - Emissionsmessungen mit dem Multiblend an einem Flugzeugtriebwerk

DEMO-SPK Konsortium

Adeptus Green Management GmbH Planning, Projects. Procurement.

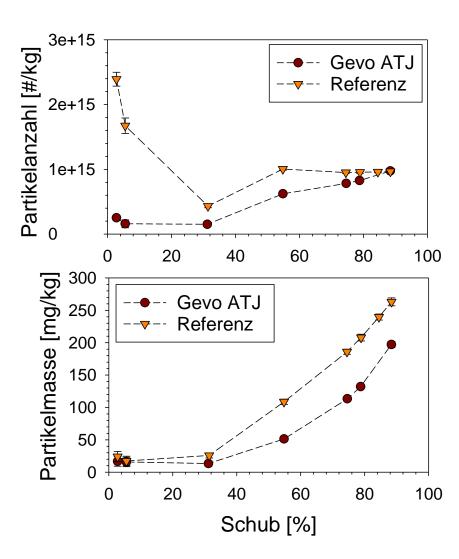
Wehrwissenschaftliches Institut für Werk- und Betriebsstoffe (WIWeB)



DEMO-SPK Logistik

Emissionsmessungen an einem A300-600 (2018)

Anstehende Herausforderungen


- Hemmnisse für den Einsatz alternativer Kraftstoffe abbauen:
 - Produktionskapazität / Skalierung
 - Lokale Transportketten aufbauen
- Lokale Projekte starten → Zu großen Projektnetzwerken weiterentwickeln
- Erprobung von
 - "drop-in" Treibstoffe (sofort spezifikationsgerecht einsetzbar)
 - "near-drop-in" Treibstoffe (erfüllen nicht jede aktuelle Spezifikation; meist aromatenarm)
 - → Weiterentwicklung von Spezifikationen
 - → Optimierung von Triebwerken für moderne Treibstoffe hinsichtlich der Partikelemissionen

Alternative Kraftstoffe ohne fossilen Anteil

- 100% ATJ auf einem CFM56-5C4 Triebwerk
- Deutliche Partikelreduktion / gleiche NO_x- und CO-Emissionen
- Keine Probleme beim Triebwerksbetrieb

Daten aus: Schripp, T., et al.,2019. Particle emissions of two unblended alternative jet fuels in a full scale jet engine. Fuel 256, 115903

Fazit

- Entwicklung und Anwendung alternativer Treibstoffe in der Luftfahrt haben in den letzten Jahren erhebliche Fortschritte gemacht
- Die wesentlichen Hürden sind Rohstoffverfügbarkeit und Wirtschaftlichkeit
- Die Weiterentwicklung von Treibstoffnormen erfolgt gründlich, um die Sicherheit zu gewährleisten
- Die Beimischung erneuerbarer alternativer Treibstoffe reduziert die CO₂- und die Rußemissionen
- Die breite Verwendung von 100% nicht-fossilem Treibstoff in der Luftfahrt ist derzeit unwirtschaftlich und benötigt noch viele Jahre der Entwicklung

Mit "blends" fliegen wir in vielen Fällen schon heute!

Danke für Ihre Aufmerksamkeit

Vielen Dank außerdem an die beteiligten Kollegen bei DLR-VT die Kollegen von den Flugexperimenten (DLR-FX) die Kollegen von der Wolkenphysik (DLR-PA) Sicherheit

Logistik

gas-to-liquid

Strom

Normen

HEFA

Verfügbarkeit

Schadstoffe

alcohol-to-jet

Teller vs. Tank

Energiewende

Zulassung

Klimawandel

Importabhängigkeit

Politik

Kosten Antriebskonzepte

power-to-liquid

