Independent curved approach procedures – safe and feasible?*

ICANA 2016
Dr. Bernd Korn, Tobias Finck, Vilmar Mollwitz, Dr. Christian Hanses, Tim Stelkens-Kobsch

DLR – Institute of Flight Guidance

*Supported by UNH, FRAPORT, DFS
How to design Noise Abatement Approach Procedures?

Optimize approach profiles:

1. Clean and idle as long as possible
2. Increase distance between a/c and population
 1. Higher approach profiles
 2. Lateral avoidance of populated areas
Segmented RNAV GPS Approach

But:
- No independent parallel approaches to RWY system
- Only applicable today between 23:00 and 05:00
Independent Approaches to Parallel Runways

- Straight approaches
- Runway spacing at least 3400 ft (1036 m)
- Precision approaches (ILS or MLS)
- Implementation of a ground-based runway monitoring system, classically: Radar Surveillance
Where do the Minimum RWY Spacing Requirements Come From?
ICAO’s Safety Case

Safety concept based on a worst-case “blunder” scenario

- Miss Distance
- Navigation Buffer
- Evader
- NTZ boundary
- NOZ B (half-width)
- Blunderer

Size of Detection Buffer:

Radar Accuracy

e.g. 0.06°

→ 20 m

ICAO Standard: 10 NM

+ Radar Update Rate (2.5s)

\[d = t \times v \times \sin(30°) \]

\(t: \) Update Rate
\(v: 150 \text{ kt} \)

→ 100 m

→ 3400 ft (1036 m) Minimum RWY Spacing
Independent curved approach procedures – safe?

Approach:
- RNAV Segmented \rightarrow Advanced RNP
- Redimensioning of Normal Operating Zones (NOZ) and No Transgression Zone (NTZ) based on modified worst-case blunder scenarios
- Assumption: Worst-case blunder angle still 30° w.r.t. current approach track
Independent curved approach procedures – safe?

Assumption:
- Curved approach: RNP AR 0.3 ≈ Advanced RNP
- Blunder from curved approach
- Assumption: Worst-case blunder angle still 30° w.r.t. current approach track

Minimum RWY spacing required: 1750 m
A320 ATRA Flight trials to validate assumptions at Braunschweig Airport
A320 ATRA Flight trials: Results
Independent curved approach procedures – operationally feasible?

Requirements

- High density traffic situations (ensure spacing)
- Handling of mixed equipage
New Route Structure
Real Time Simulation to assess Operational Feasibility

- Two weeks of simulation with 6 Controllers from DFS

- Focus on approach to RWY 25L (curved approach or ILS-approach)
 - No analysis of blunder scenarios, missed approach procedures

- Per simulation run:
 - 2 controller workstations (Feeder und Pickup)
 - Curved approach: all aircraft with RNP-capability
 - ILS-approach: all aircraft without RNP-capability
 - Controller knows which aircraft are certified for RNP-approach

- Variation of Traffic and RNP-capability (segmented approach vs. ILS-approach) \(\rightarrow\) six scenarios
- Every controller did every scenario on every position
Real Time Simulation – Setup

• Flight plan 2014: busy summer day
 (core time 07:30 – 08:30 / RWY 25L: 28 approaches per hour)

 • Variation of RNP-capability
 • 50 % segmented approach / 50 % ILS approach
 • 80 % segmented approach / 20 % ILS approach
 • 100 % segmented approach / 0 % ILS approach

• Flight plan 2022: forecast Fraport
 (core time 10:30 – 11:30 / RWY 25L: 32 approaches per hour)

 • Variation of RNP-capability
 • 50 % segmented approach / 50 % ILS approach
 • 80 % segmented approach / 20 % ILS approach
 • 100 % segmented approach / 0 % ILS approach
Real Time Simulation Results – Flightpath

Scenario 1 – 2014 (50% RNP – 50% ILS) – 07:30 - 08:30
Real Time Simulation Results – Flightpath

Scenario 4 – 2022 (50% RNP – 50% ILS) – 10:30 - 11:30
Real Time Simulation Results – Flightpath

Scenario 6 – 2022 (100% RNP – 0% ILS) – 10:30 - 11:30
Real Time Simulation Results – Performance

Average Controlled Aircraft

- Flight Plan 2014 Scenario 1-3: 27.33
- Flight Plan 2014 Scenario 4-6: 27.89
- Flight Plan 2022 Scenario 1-3: 27.06
- Flight Plan 2022 Scenario 4-6: 26.39

Pseudo Pilot Accuracy

- Pickup: 98.79% (Correct), 1.21% (Incorrect)
- Feeder: 98.90% (Correct), 1.10% (Incorrect)

Simultaneously Controlled Aircraft - Feeder

- Flight Plan 2014 Scenario 1-3: 5.89
- Flight Plan 2014 Scenario 4-6: 6.11
- Flight Plan 2022 Scenario 1-3: 2.11
- Flight Plan 2022 Scenario 4-6: 1.89

Simultaneously Controlled Aircraft - Pickup

- Flight Plan 2014 Scenario 1-3: 8.72
- Flight Plan 2014 Scenario 4-6: 5.00
- Flight Plan 2022 Scenario 1-3: 3.22
- Flight Plan 2022 Scenario 4-6: 5.00
Real Time Simulation Results – Mental Workload (AIM)

AIM-Feeder

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Aver</th>
<th>Stdv</th>
<th>Σ/20</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>26,50</td>
<td>11,33</td>
<td>1,33</td>
</tr>
<tr>
<td>2</td>
<td>21,33</td>
<td>9,91</td>
<td>1,07</td>
</tr>
<tr>
<td>3</td>
<td>25,00</td>
<td>13,30</td>
<td>1,25</td>
</tr>
<tr>
<td>4</td>
<td>31,50</td>
<td>13,41</td>
<td>1,58</td>
</tr>
<tr>
<td>5</td>
<td>30,67</td>
<td>16,63</td>
<td>1,53</td>
</tr>
<tr>
<td>6</td>
<td>30,00</td>
<td>14,21</td>
<td>1,50</td>
</tr>
</tbody>
</table>

AIM-Pickup

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Aver</th>
<th>Stdv</th>
<th>Σ/20</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20,17</td>
<td>14,34</td>
<td>1,01</td>
</tr>
<tr>
<td>2</td>
<td>18,00</td>
<td>9,44</td>
<td>0,90</td>
</tr>
<tr>
<td>3</td>
<td>22,50</td>
<td>13,58</td>
<td>1,13</td>
</tr>
<tr>
<td>4</td>
<td>37,17</td>
<td>15,37</td>
<td>1,86</td>
</tr>
<tr>
<td>5</td>
<td>36,50</td>
<td>13,43</td>
<td>1,83</td>
</tr>
<tr>
<td>6</td>
<td>36,17</td>
<td>16,59</td>
<td>1,81</td>
</tr>
</tbody>
</table>
Real Time Simulation Results – Situation Awareness (SASHA)

SASHA-Feeder

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Aver</th>
<th>Stdv</th>
<th>Σ/6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>33,00</td>
<td>1,41</td>
<td>5,50</td>
</tr>
<tr>
<td>2</td>
<td>32,83</td>
<td>2,56</td>
<td>5,47</td>
</tr>
<tr>
<td>3</td>
<td>34,33</td>
<td>1,21</td>
<td>5,72</td>
</tr>
<tr>
<td>4</td>
<td>32,33</td>
<td>2,42</td>
<td>5,39</td>
</tr>
<tr>
<td>5</td>
<td>32,83</td>
<td>2,64</td>
<td>5,47</td>
</tr>
<tr>
<td>6</td>
<td>32,00</td>
<td>4,00</td>
<td>5,33</td>
</tr>
</tbody>
</table>

SASHA-Pickup

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Aver</th>
<th>Stdv</th>
<th>Σ/6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>35,50</td>
<td>0,84</td>
<td>5,92</td>
</tr>
<tr>
<td>2</td>
<td>34,67</td>
<td>1,51</td>
<td>5,78</td>
</tr>
<tr>
<td>3</td>
<td>34,83</td>
<td>1,33</td>
<td>5,81</td>
</tr>
<tr>
<td>4</td>
<td>32,67</td>
<td>2,94</td>
<td>5,44</td>
</tr>
<tr>
<td>5</td>
<td>30,83</td>
<td>3,76</td>
<td>5,14</td>
</tr>
<tr>
<td>6</td>
<td>32,67</td>
<td>3,44</td>
<td>5,44</td>
</tr>
</tbody>
</table>
Real Time Simulation Results - ISA

Scenario 1 (2014 - 50% / 50%)

Scenario 2 (2014 - 80% / 20%)

Scenario 3 (2014 - 100% / 0%)

Scenario 4 (2022 - 50% / 50%)

Scenario 5 (2022 - 80% / 20%)

Scenario 6 (2022 - 100% / 0%)
Conclusion from Real Time Simulations

• Procedure is suitable for EDDF
 • Route distance between the waypoints is enough
 • Feeder could handle max. 5 – 6 a/c simultaneously
 • p.r.n. Changes in airspace C
 • p.r.n. reintroduction of holdings

• Subjective measurements could not detect an effect of the percentage of aircraft with RNP capabilities
• Low level of workload and high level of situation awareness in all scenarios
• All controllers can imagine working with the system themselves

→ More studies necessary
 → Real Time Simulation with independent parallel approaches and departures
 → Wind effects
 → Blunder scenarios / Go Around Procedures
 → Speed reduction on the divergent route → aircraft separation
Overall Conclusions

- Independent ILS – Advanced RNP / RNP AR approaches seemed to be possible at Frankfurt
 → has to be established at ICAO level
 → option: effect of RNP-to-xLS to be investigated

- First results from Real Time Simulations
 - New route structure enables handling of mixed equipage
 - Envisaged traffic demand should be manageable