Independent curved approach procedures – safe and feasible?*

ICANA 2016 Dr. Bernd Korn, Tobias Finck, Vilmar Mollwitz, Dr. Christian Hanses, Tim Stelkens-Kobsch

DLR – Institute of Flight Guidance

*Supported by UNH, FRAPORT, DFS

Knowledge for Tomorrow

How to design Noise Abatement Approach Procedures?

Optimize approach profiles:

- 1. Clean and idle as long as possible
- 2. Increase distance between a/c and population
 - 1. Higher approach profiles
 - 2. Lateral avoidance of populated areas

Segmented RNAV GPS Approach

But:

- No independent parallel approaches to RWY system
- Only applicable today between 23:00 and 05:00

Independent Approaches to Parallel Runways

• Straight approaches

-top view-

ILS RWY A

ILS RWY B

-side view-

- Runway spacing at least 3400 ft (1036 m)
- Precision approaches (ILS or MLS)
- Implementation of a ground-based runway monitoring system, classically: Radar Surveillance

NOZ

NOZ

NTZ

() min. 1000 ft

Separation between A/C on same approach path AND between A/C on parallel approach path

Separation between A/C on same approach path, **ONLY**

Where do the Minimum RWY Spacing Requirements Come From? ICAO's Safety Case

 \rightarrow 3400 ft (1036 m) Minimum RWY Spacing

Independent curved approach procedures – safe?

Approach:

- RNAV Segmented \rightarrow Advanced RNP
- Redimensioning of Normal Operating Zones (NOZ) and No Transgression Zone (NTZ) based on modified worstcase blunder scenarios
- Assumption: Worst-case blunder angle still 30° w.r.t. current approach track

Independent curved approach procedures – safe?

Assumption:

- Curved approach: RNP AR 0.3 ≈ Advanced RNP
- Blunder from curved approach
- Assumption: Worst-case blunder angle still 30° w.r.t. current approach track

Minimum RWY spacing required: 1750 m

A320 ATRA Flight trials to validate assumptions at Braunschweig Airport

Independent curved approach procedures – operationally feasible?

New Route Structure

Real Time Simulation to assess Operational Feasibility

- Two weeks of simulation with 6 Controllers from DFS
- Focus on approach to RWY 25L (curved approach or ILS-approach)
 - No analysis of blunder scenarios, missed approach procedures
- Per simulation run:
 - 2 controller workstations (Feeder und Pickup)
- Curved approach: all aircraft with RNP-capability
- ILS-approach: all aircraft without RNP-capability
- Controller knows which aircraft are certified for RNPapproach
- Variation of Traffic and RNP-capability (segmented approach vs. ILS-approach) → six scenarios
- Every controller did every scenario on every position

Real Time Simulation – Setup

- Flight plan 2014: busy summer day (core time 07:30 – 08:30 / RWY 25L: 28 approaches per hour)
 - Variation of RNP-capability
 - 50 % segmented approach/ 50 % ILS approach
 - 80 % segmented approach / 20 % ILS approach
 - 100 % segmented approach / 0 % ILS approach
- Flight plan 2022: forecast Fraport (core time 10:30 – 11:30 / RWY 25L: 32 approaches per hour)
 - Variation of RNP-capability
 - 50 % segmented approach / 50 % ILS approach
 - 80 % segmented approach / 20 % ILS approach
 - 100 % segmented approach / 0 % ILS approach

Real Time Simulation Results – Flightpath

Scenario 1 – 2014 (50% RNP – 50% ILS) – 07:30 - 08:30

Radar tracks 07:30 - 08:30 (29.09.2016, real world)

oldbach (Unterfrank)

Real Time Simulation Results – Flightpath

Scenario 4 – 2022 (50% RNP – 50% ILS) – 10:30 - 11:30

Real Time Simulation Results – Flightpath

Scenario 6 – 2022 (100% RNP – 0% ILS) – 10:30 - 11:30

Real Time Simulation Results – Performance

Real Time Simulation Results – Mental Workload (AIM)

Scenario	Aver	Stdv	Σ/20
1	26,50	11,33	1,33
2	21,33	9,91	1,07
3	25,00	13,30	1,25
4	31,50	13,41	1,58
5	30,67	16,63	1,53
6	30,00	14,21	1,50
			1

Scenario	Aver	Stdv	Σ/20
1	20,17	14,34	1,01
2	18,00	9,44	0,90
3	22,50	13 , 58	1,13
4	37,17	15,37	1,86
5	36,50	13,43	1,83
6	36,17	16,59	1,81

Real Time Simulation Results – Situation Awareness (SASHA)

Scenario	Aver	Stdv	Σ/6
1	33,00	1,41	5,50
2	32,83	2,56	5,47
3	34,33	1,21	5,72
4	32,33	2,42	5,39
5	32,83	2,64	5,47
6	32,00	4,00	5,33

Scenario	Aver	Stdv	Σ/6
1	35,50	0,84	5,92
2	34,67	1,51	5,78
3	34,83	1,33	5,81
4	32,67	2,94	5,44
5	30,83	3,76	5,14
6	32,67	3,44	5,44

Real Time Simulation Results - ISA

Conclusion from Real Time Simulations

- Procedure is suitable for EDDF
 - Route distance between the waypoints is enough
 - Feeder could handle max. 5 6 a/c simultaneously
 - p.r.n. Changes in airspace C
 - p.r.n. reintroduction of holdings
- Subjective measurements could not detect an effect of the percentage of aircraft with RNP capabilities
- Low level of workload and high level of situation awareness in all scenarios
- All controllers can imagine working with the system themselves
- \rightarrow More studies necessary
 - → Real Time Simulation with independent parallel approaches and departures
 - \rightarrow Wind effects
 - \rightarrow Blunder scenarios / Go Around Procedures
 - \rightarrow Speed reduction on the divergent route \rightarrow aircraft separation

Overall Conclusions

- Independent ILS Advanced RNP / RNP AR approaches seemed to be possible at Frankfurt
 - \rightarrow has to be established at ICAO level
 - \rightarrow option: effect of RNP-to-xLS to be investigated
- First results from Real Time Simulations
 - New route structure enables handling of mixed equipage
 - Envisaged traffic demand should be manageable

