RNP Solutions in Australia

Australia’s PBN Transition brings Opportunities for Active Noise Abatement.

Simon Young
Strategy, Innovation and Service Performance Manager
Australian Environment and PBN
Drivers
Opportunities for Active Noise Abatement in the RNP Family

ICAO PBN Specification

RNP
- **En Route**
 - RNP 4 / RNP 10 Oceanic
 - RNP 2 Continental
- **Terminal**
 - RNP 1
 - RNP 0.3
 - RNP APCH
 - RNP AR APCH

RNAV
- **En Route**
 - RNAV 10 Oceanic
 - RNAV 5 Continental
- **Terminal**
 - RNAV 2
 - RNAV 1
RNP AR APCH

- Australian History:
 - Qantas sponsored trial which led to a broader implementation project.
 - Now an ongoing program driven by customer-identified need.

- Examples of placing the flight path so the residual noise has less impact:
 - Brisbane ‘River Track’ and
 - Canberra Runway 35
Brisbane ‘River’ track

- Demonstration site
 - First flights January 2007
 - 11k participating flights through October 2008
- Replicated an existing visual procedure.
- Three potential areas of noise benefit were suggested as:
 - Higher vertical profile with constant descent.
 - Later landing configuration.
 - Residual noise focussed over river and industrial area.
Brisbane ‘River’ track: Population Overflown

- Allowing for the navigational accuracy of each procedure the affected population captured by each was
 - Visual procedure (±0.7NM) : 63300
 - RNP AR procedure (±0.3NM) : 24550
Brisbane ‘River’ track: Noise Contour

Conventional ILS

RNP AR
Canberra RWY35

- 85% of arrivals use RWY35.
- Merge point moved over farmland west of new residential developments in Jerrabombra.
- LAmax reduction of 6 to 10dB(A) forecast.
- Additional benefit from RWY17 missed approach using a similar lateral path.
Vertically Guided RNP Approach

• BaroVNav in the Australian context
• Superior energy management through FMS
• Driver isn’t typically necessarily ANA but there is something there

Into the future:
• Extend vertical guidance into STAR phase if there is a need
• Add RF leg to procedures where there is a need.
RNP into xLS

- Flown as a one off as RNP into GLS at Sydney in 2009.
- More recent trials and implementations of both ILS and GLS around the world.
- Procedures well developed and understood.
- Wider trial and deployment planned in Australia for both ILS and GLS final segments.
Leveraging GLS Capabilities

Combine the capabilities:

- RNP into GLS
- Adaptive Glideslope
- Displaced Threshold

- RNP to GLS
- 1.4NM Short Final
- 3° glideslope

- RNP to GLS
- 1.4NM Short Final
- 3.5° glideslope
- 1000 ft displaced threshold
Constraints
Runway Alignment
Sunshine Coast, RWY36

- No precision approach or RNAV (GNSS) available, only conventional non precision approach.
Sunshine Coast, RWY36 RNP AR

- Proprietary procedure limited to A320.
- FROP is 1.22NM from the threshold @ 449ft
- Can’t be duplicated with ICAO criteria
Turn Radius: RF Legs

• The RF leg is key to much of the available benefit.
 • Precisely locating turn entry and exit and containing the curved path.

• BUT is limited by:
 • Angle of bank and speed.
 • Tangential entry and exit.
Approach Minima

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>A/B</th>
<th>C</th>
<th>C/D</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNP (0.10)</td>
<td>N/A</td>
<td>DA(H) 2381 (507)-2.7</td>
<td>DA(H) 2398 (524)-2.8</td>
</tr>
<tr>
<td>RNP (0.15)</td>
<td>N/A</td>
<td>DA(H) 2434 (560)-3.0</td>
<td>DA(H) 2461 (587)-3.2</td>
</tr>
<tr>
<td>RNP (0.20)</td>
<td>N/A</td>
<td>DA(H) 2779 (905)-5.0</td>
<td>DA(H) 2792 (918)-5.1</td>
</tr>
<tr>
<td>RNP (0.30)</td>
<td>N/A</td>
<td>DA(H) 3282 (1408)-8.0</td>
<td>DA(H) 3296 (1422)-8.0</td>
</tr>
<tr>
<td>CIRCLING</td>
<td>N/A</td>
<td>NOT AUTHORISED</td>
<td></td>
</tr>
<tr>
<td>ALTERNATE</td>
<td></td>
<td>TBD</td>
<td>TBD</td>
</tr>
</tbody>
</table>
Lessons

• Consider the whole path and its interaction with surrounding Air Traffic Management procedures not just the approach in isolation.
 • A perfect procedure that can’t be issued by ATC is wasted.

• In the Australian environment, RF Legs and vertical guidance offer best return for effort and resources.

• Consultation:
 • Early and often.
 • Community don’t particularly care about the technology they care about the outcome.
 • Focus on a win/win outcome not winning the fight.
Thank You

Simon Young
Air Navigation Services
Strategy, Innovation and Service Performance Manager

simon.young@airservicesaustralia.com
+612 6268 4526