

Auswertung der Überflüge sowie der Fluggeräuschmessdaten des MP-203 in Offenbach am Main

Berichtszeitraum: Oktober 2018 - Dezember 2018 | Stand 20.03.2019

Inhalt

1	Einführung	4
1.1	Messsystem deBAKOM	4
1.2	Erläuterung der verschiedenen Pegel (Abkürzungen)	4
1.3	Standort der Messstation	5
2	Überflughöhen	7
2.1	Auswertungsmethode und Erfassungsrate	7
2.2	Bahnnutzung bzgl. Landungen	8
2.3	Ausfallzeiten	8
2.4	Anflughöhen bei Betriebsrichtung 25	8
3	Fluggeräuschereignisse	11
4	Fluggeräuschpegel	12
4.1	Maximalpegelverteilung	12
4.2	Leq- und NAT-Auswertung	14
4.3	Jahresübersicht 2018	17

Anlagen

Anlage 1: Geräuschklassifikation der Firma deBAKOM

Abbildungsverzeichnis

Abb. 1: Standort der Messstation MP-203 (Quelle: Google Maps)	····5
Abb. 2: BR25 - Identifizierte Anflüge im Dezember 2018, Vorderansicht (Quelle: Bing Maps)	7
Abb. 3: BR25 - Identifizierte Anflüge im Dezember 2018, Draufsicht (Quelle: Bing Maps)	8
Abb. 4: Boxplots - Anflughöhen bei Betriebsrichtung 25	9
Abb. 5: Anzahl Fluggeräuschereignisse (Tag und Nacht)	11
Abb. 6: Maximalpegelverteilung am Tag (Fluggeräusch)	12
Abb. 7: Maximalpegelverteilung in der Nacht (Fluggeräusch)	13
Abb. 8: L _{DIN} Tag und Nacht	14
Abb. 9: NAT68 und NAT72	15
Abb. 10: L _{eq} Tag und Nacht	15
Abb. 11 : L ₉₅ Tag und Nacht	16

1 Einführung

1.1 Messsystem deBAKOM

Wesentliche Komponenten des Messsystems sind eine wetterfeste und beheizte Mikrofoneinheit (Klasse 1 Mikrofon) mit Windschirm, eine Wetterstation sowie ein Messrechner. Bei Windgeschwindigkeiten im Mittel > 5 m/s werden alle Geräusche ausgeblendet, um die Erfassung von Störgeräuschen zu verhindern. Die Daten werden im Messrechner erfasst und stündlich an das Umwelt- und Nachbarschaftshaus (UNH) übertragen.

Für die Geräuschauswertung wird eine spezielle Software eingesetzt, die eine 2-stufige Erkennung durchführt: 1. Stufe ist die Erkennung auf Grund physikalischer Parameter nach DIN 45643 (Messung und Beurteilung von Fluggeräuschen) d.h. der Schallpegel eines Fluggeräuschereignisses muss z.B. einen Messschwellenpegel um mindestens einen bestimmten Betrag übersteigen; 2. Stufe ist eine detaillierte Erkennung anhand einer Korrelationsanalyse mit Musterspektren (s. Anlage). Diese werden mit Hilfe von Audioaufzeichnungen aus für den Messort typischen Fluggeräuschereignissen erstellt. Als 3. Stufe werden die erkannten Fluggeräuschereignisse mit den FANOMOS-Daten (Radarspuren) der Deutschen Flugsicherung (DFS) korreliert. Falls diese Prüfkriterien alle zueinander passen, wird das Ereignis als Fluggeräuschereignis deklariert und fließt in die Fluggeräuschauswertung ein.

1.2 Erläuterung der verschiedenen Pegel (Abkürzungen)

 $L_{DIN,T}$ = Fluggeräusch L_{eq} (nach DIN 45643 vom Februar 2011) (Tag 06:00 - 22:00 Uhr).

 $L_{DIN,N}$ = Fluggeräusch L_{eq} (nach DIN 45643 vom Februar 2011) (Nacht 22:00 - 06:00 Uhr).

 $L_{eq,T}$ = L_{eq} aller Geräusche (Tag 06:00 - 22:00 Uhr).

 $L_{eq,N} = L_{eq}$ aller Geräusche (Nacht 22:00 - 06:00 Uhr).

 $L_{95,T}$ = L_{eq} aller Geräusche der zu 95% der Beurteilungszeit überschritten ist (Tag 06:00 - 22:00 Uhr).

 $L_{95,N}$ = L_{eq} aller Geräusche der zu 95% der Beurteilungszeit überschritten ist (Nacht 22:00 - 06:00 Uhr).

NAT68 = Anzahl der Fluggeräuschereignisse die 68 dB(A) überschreiten (Nacht 22:00 - 06:00 Uhr).

NAT72 = Anzahl der Fluggeräuschereignisse die 72 dB(A) überschreiten (Nacht 22:00 - 06:00 Uhr).

1.3 Standort der Messstation

Die Messstation auf dem alten Friedhof der Stadt Offenbach am Main, wurde am 15. Dezember 2011 in Betrieb genommen. Die Koordinaten des Standortes (MP-203) lauten: 32 U 484327; 5550255 [UTM]. Die Messhöhe des Mikrofons beträgt 4 m über dem Dach des Friedhofsgebäudes (ca. 8 m ü. Grund).

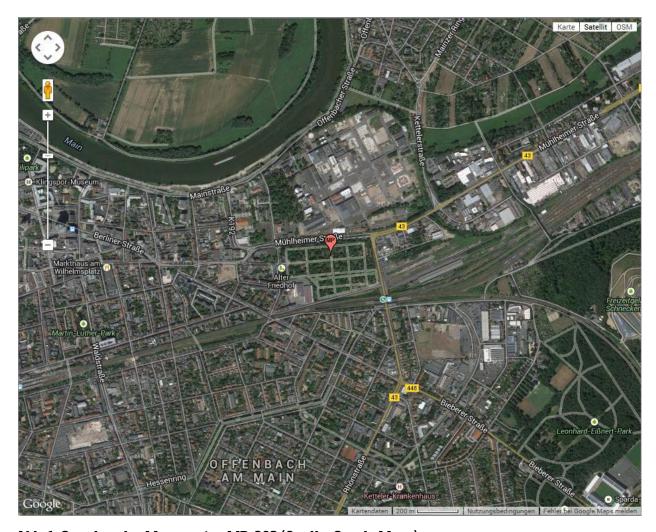


Abb. 1: Standort der Messstation MP-203 (Quelle: Google Maps)

 $Diese\ Auswertung\ umfasst\ Daten\ vom\ 1.\ Oktober\ 2018\ bis\ zum\ 31.\ Dezember\ 2018.$

Auswertung der Überflüge über Offenbach am Main

2 Überflughöhen

2.1 Auswertungsmethode und Erfassungsrate

Der Auswertebereich für die Überflüge über dem MP-203 hat folgende Ausdehnungsmaße: Breite jeweils 1852 m (1 NM) links und rechts der Station; die Auswertungshöhe beträgt maximal 4500 m über NN (MSL), die Ausrichtung des Tors beträgt 250° für die Betriebsrichtung (BR) 25.

	Anzahl der Flüge durch das o.g. Tor	Anzahl der erfassten Fluggeräuschereignisse	Prozentualer Anteil der erfassten Fluggeräuschereignisse
Anflüge (BR25)	15592	10020	64,26%

Zur Übersicht werden die Abbildungen des "Durchflugtors" im Dezember 2018 für die BR25 dargestellt. Es sind nur Flüge bis 13500 ft enthalten und die die o.g. Prüfkriterien 1 bis 3 erfüllt haben. Flüge die zu diesem Zeitpunkt höher als 13500 ft über dem Standort waren, sind in den FANOMOS-Daten, die das UNH erhält, nicht enthalten.

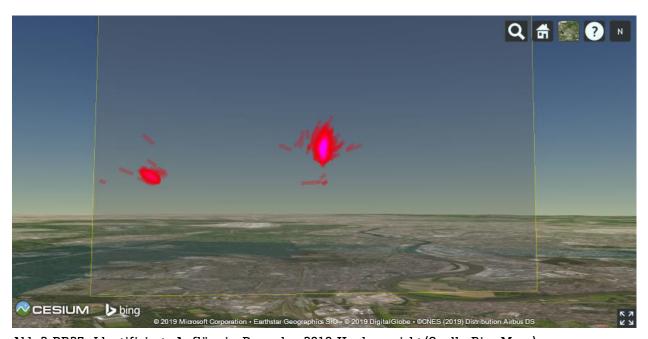


Abb. 2: BR25 - Identifizierte Anflüge im Dezember 2018, Vorderansicht (Quelle: Bing Maps)

Abb. 3: BR25 - Identifizierte Anflüge im Dezember 2018, Draufsicht (Quelle: Bing Maps)

2.2 Bahnnutzung bzgl. Landungen

	Betriebsrichtung 25			Betriebsrichtung 07			Monatlicher Durchschnitt	
Bahnnutzung in [%]	RWY 25R	RWY 25C	RWY 25L	RWY 07L	RWY 07C	RWY 07R	BR25	BR07
Oktober	19,12%	2,42%	20,29%	29,36%	2,39%	26,41%	41,83%	58,17%
November	15,50%	2,03%	18,05%	31,46%	2,17%	30,80%	35,58%	64,42%
Dezember	33,11%	10,76%	35,45%	10,21%	1,03%	9,44%	79,33%	20,67%

2.3 Ausfallzeiten

Beginn Ende		Ausfallzeit in Std.	Ausfallgrund		
05.10.2018 10:00	05.10.2018 10:59	1 h	Wartungsarbeiten		

2.4 Anflughöhen bei Betriebsrichtung 25

Bei den Auswertungen der Anflughöhen wurden nur Flüge betrachtet, die durch das o.a. "Durchflugtor" geflogen sind, die o.g. Prüfkriterien 1 bis 3 erfüllt haben und am Frankfurter Flughafen (EDDF) gestartet oder gelandet sind.

Höhe (MSL) in [ft] bei BR25	Oktober	November	Dezember	
Mittelwert	3743	3732	3839	
Standardfehler des Mittelwer	ts	5	5	4
95% Konfidenzintervall des	Untergrenze	3734	3723	3831
Mittelwerts	Obergrenze	3752	3741	3847
5% getrimmtes Mittel		3761	3749	3858
Median		3829	3740	3914
Varianz		80554	50004	74634
Standardabweichung		284	224	273
Minimum		2546	2929	2923
Maximum		5158	4391	4732
Spannweite		2612	1462	1809
Interquartilbereich		323	217	253
Schiefe		-1,10	-1,39	-1,39
Kurtosis		1,19	2,85	1,77
Anzahl Ereignisse:		3643	2319	4058

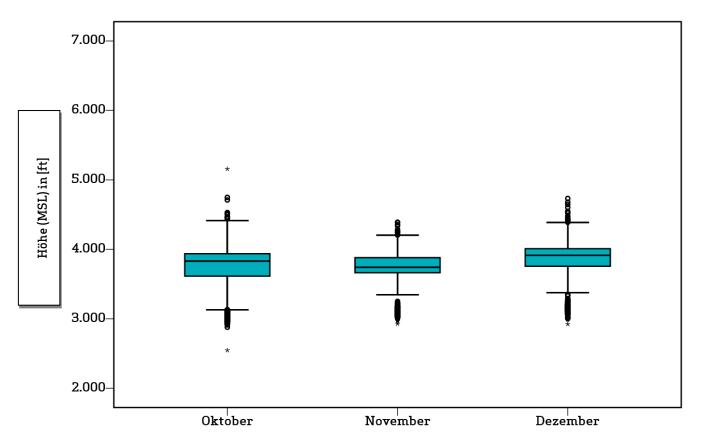


Abb. 4: Boxplots - Anflughöhen bei Betriebsrichtung 25

Auswertung der Fluggeräuschmessstation (MP-203)

3 Fluggeräuschereignisse

"Ereignisse" sind die von der Software der Station als Fluggeräuschereignis erkannten Pegel. Die Erkennung der Ereignisse basiert in Schritt 1 auf den Kriterien der DIN 45643, in Schritt 2 auf der Geräuschklassifikation der Firma deBAKOM (s. Anhang) und in Schritt 3 auf eine Korrelation mit den FANOMOS-Daten der DFS.

Die Tabelle zeigt die registrierten Fluggeräuschereignisse (Fluglärmereignisse) an der Station sowie die Anzahl der identifizierten Überflüge über die Station. Überflüge, die von der Station nicht als Ereignisse erkannt werden, sind in dieser Auswertung nicht enthalten.

	Anzahl de	Anzahl gesamt	
	Tag 06:00 - 22:00 Uhr	BR25	
Oktober	3229	414	3643
November	2095	224	2319
Dezember	Dezember 3508		4058

Abb. 5: Anzahl Fluggeräuschereignisse (Tag und Nacht)

4 Fluggeräuschpegel

4.1 Maximalpegelverteilung

Maximalpegelverteilung am Tag (06:00 bis 22:00 Uhr)

	55 - 60 dB(A)	60 - 65 dB(A)	65 - 70 dB(A)	70 - 75 dB(A)	75 - 80 dB(A)
Oktober	26	2197	930	75	1
November	4	1406	652	31	2
Dezember	26	2240	1153	84	5

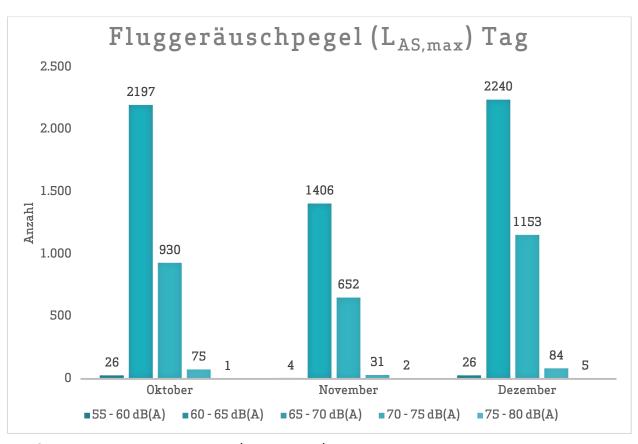


Abb. 6: Maximalpegelverteilung am Tag (Fluggeräusch)

Maximalpegelverteilung in der Nacht (22:00 bis 06:00 Uhr)

	55 - 60 dB(A)	60 - 65 dB(A)	65 - 70 dB(A)	70 - 75 dB(A)	75 - 80 dB(A)
Oktober	44	235	127	8	0
November	13	109	92	9	1
Dezember	35	245	252	17	1

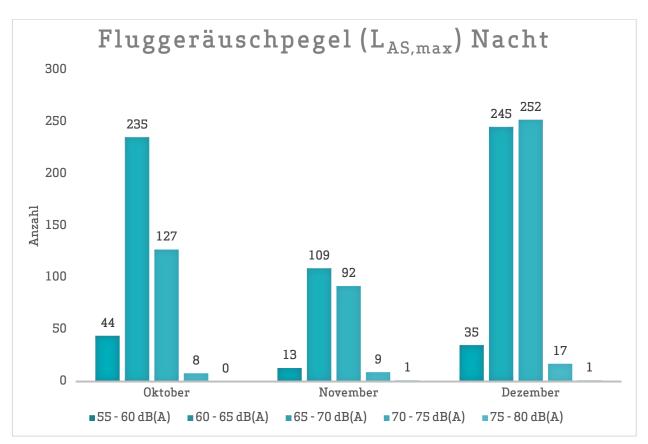


Abb. 7: Maximalpegelverteilung in der Nacht (Fluggeräusch)

4.2 Leq- und NAT-Auswertung

in dB(A)	$L_{\text{DIN,T}}$	$L_{\mathrm{DIN,N}}$	NAT68*	NAT72*	$L_{\text{eq,T}}$	$L_{\text{eq,N}}$	L _{95,T}	L _{95,N}
Oktober	49,4	43,4	32	2	55,7	50,2	49,2	42,9
November	47,9	41,9	29	1	56,1	51,0	49,4	43,1
Dezember	49,9	45,3	73	9	56,4	52,5	49,4	43,5

Abb. 8: L_{DIN} Tag und Nacht

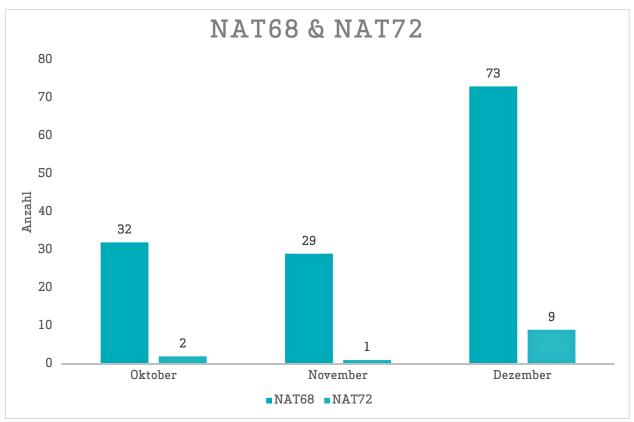


Abb. 9: NAT68 und NAT72

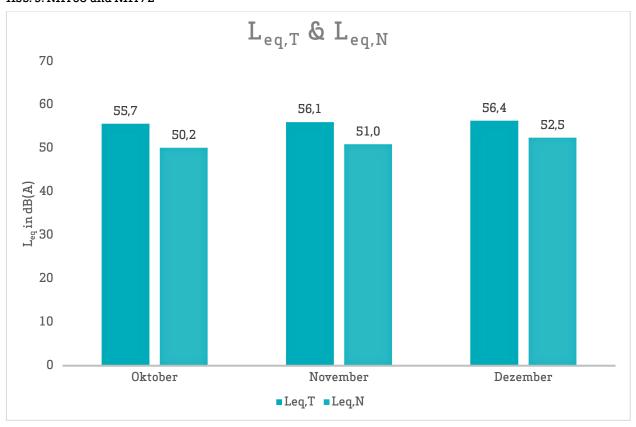


Abb. 10: $L_{\text{eq}}\,\text{Tag}\,\text{und}\,\text{Nacht}$

Abb. 11: L₉₅ Tag und Nacht

4.3 Jahresübersicht 2018

in dB(A)	$L_{\mathrm{DIN,T}}$	$L_{\rm DIN,N}$	NAT68*	NAT72*	$\mathbf{L}_{eq,T}$	$L_{\text{eq,N}}$	L _{95,T}	L _{95,N}
Januar	48,8	43,6	58	6	57,2	55,5	49,3	43,1
Februar	45,8	41,0	11	1	54,3	49,6	48,5	41,9
März	48,5	42,7	31	3	55,5	50,3	49,2	42,5
April	49,4	42,3	17	3	56,5	51,3	49,3	42,5
Mai	46,1	38,9	15	0	54,6	50,5	47,8	43,0
Juni	49,9	43,0	23	1	55,5	51,9	48,2	42,8
Juli	49,4	44,0	33	2	55,0	49,6	46,7	42,4
August	50,3	44,6	26	4	55,4	50,0	47,3	41,5
September	49,7	44,2	18	2	55,5	50,1	48,2	42,4
Oktober	49,4	43,4	32	2	55,7	50,2	49,2	42,9
November	47,9	41,9	29	1	56,1	51,0	49,4	43,1
Dezember	49,9	45,3	73	9	56,4	52,5	49,4	43,5

^{*} Hierbei handelt es sich um einen gemessenen Wert, der nicht nach Fluglärmschutzgesetz zur Definition von Fluglärmschutzzonen heranzuziehen ist.

Fluglärmmessung mit automatischer Geräuschklassifikation

D.Hemmer¹, D. Knauß², C. Pörschmann¹

¹ Fachhochschule Köln, 50679 Köln - e-mail: <u>dominic.hemmer@fh-koeln.de</u> ² deBAKOM GmbH, 51519 Odenthal

Einleitung

Bei der Messung von Flugzeuggeräuschen ist mit einer Beeinflussung des Fluglärmpegels durch verschiedene Fremdgeräusche zu rechnen. Zur Trennung dieser Ereignisse gibt es unter anderem die Möglichkeit der Klassifizierung durch Mustererkennung oder Korrelationsanalyse, die eine getrennte Betrachtung der auftretenden Schallereignisse ermöglicht. In der hier vorgestellten Untersuchung geht es in erster Linie um die Auswirkung verschiedener Erkennungsmethoden auf den Mittelungspegel und weniger um die Fehlerraten bei der Erkennung der Anzahl an Flugzeugen.

Vergleich zweier Methoden

Zur Geräuschidentifikation von Flugzeugen wurde an der Fachhochschule Köln ein Algorithmus entwickelt, mit dem es möglich ist, Flugzeuggeräusche zu identifizieren (Methode 1) [1]. Im Rahmen eines gemeinsamen Forschungsprojektes kann mit der Firma deBAKOM aus Odenthal der neu entwickelte Algorithmus getestet und mit dem vorhandenen Verfahren (Methode 2) der deBAKOM verglichen werden.

Methode 1

Die verwendete Musteranalyse arbeitet mit einem Vergleich mehrerer spektraler und temporaler akustischer Eigenschaften die als Merkmale zur Identifikation von Audiosignalen dienen. Untersuchungen mit verschiedenen akustischen Merkmalen zeigten [1], dass sich einige besonders gut zur Identifikation von Flugzeuggeräuschen eignen. Folgende Merkmale wurden zur Identifikation verwendet:

- spektraler Schwerpunkt
- kepstrale Wölbung und Schiefe
- Linear Predictive Coding: Schwerpunkt und Schwankung
- MFCC (Mel Frequency Cepstral Coefficients)

Die Verwendung von MFCC stellt sich als besonders günstig heraus. Werden bestimmte Koeffizienten der MFCC verwendet, so erhält man einen Merkmalsvektor, welcher eine gute Unterscheidung von Flugzeuggeräusche und anderen Geräuschsklassen ermöglicht.

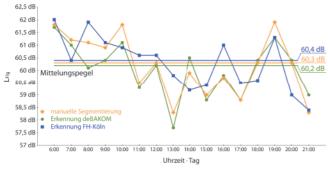


Abbildung 1: MFCC aus verschiedenen Klassen (a: Flugzeug, b: Auto, c: Zug, d: Hintergrund) – Dargestellt sind jeweils 18 Koeffizienten, aufgetragen über der Zeit.

Methode 2

Die derzeit in der Praxis eingesetzte Methode zur automatischen Erkennung von Fluglärm ist ein 3-stufiges Verfahren, das auf der spektralen Struktur und dem typischen zeitlichen Verlauf von Flugzeuggeräuschen, wie er z.B. in der DIN 45643 beschrieben ist, beruht. Die ersten beiden Stufen der Erkennung nutzen die spektrale Struktur des Fluglärms zur Identifikation. In der ersten Stufe erfolgt die Zuordnung anhand des Gesamtspektrums, während in der zweiten Stufe eine detailliertere Erkennung anhand einer Korrelationsanalyse mit Musterspektren erfolgt. Diese Musterspektren werden anhand von Audioaufzeichnungen aus für den Messort typischen Fluglärmereignissen erstellt.

Da die spektrale Struktur von Fluglärmgeräuschen stark variiert, d.h. auch vom jeweiligen Messort abhängig ist, ist eine individuelle Anpassung der Muster an den Messort erforderlich. Dies kann entweder vorab erfolgen, falls bereits Audiodaten vorliegen, oder die Zuordnung wird nach der Messung durchgeführt. In beiden Fällen erfolgt die Erkennung mit Stufe 1, die bereits eine gute Erkennung zulässt. Die Bestimmung des Fluglärmpegels erfolgt in der Regel ereignisorientiert, d.h. Fluglärm ist auf eine kurze Zeitspanne beschränkt. Diese Tatsache wird im dritten Teil der Fluglärmerkennung verwendet, indem aus dem Pegel-Zeitverlauf Ereignisse heraus gefiltert werden, die der typischen zeitlichen Struktur des Fluglärms am Messort entsprechen. Dies sind z.B. die Dauer des Ereignisses, die sogenannte t10-Zeit oder typische Pegelhöhen. Damit stehen für die Zuordnung zwei Kriterien zur Verfügung: Das Geräusch entspricht in seiner spektralen Struktur Fluglärm und die zeitliche Struktur entspricht den Fluglärmgeräuschen.


Beispiele aus der Praxis

Die Tabelle in Abbildung 2 zeigt ein Beispiel für die automatische Fluglärmerkennung. Das Messsystem wurde im August 2010 in Neu-Isenburg (Flughafen Frankfurt) eingerichtet. In der Tabelle sind die Pegelwerte sowie die Anzahl von Fluglärmereignissen in einem Erfassungszeitraum von 5 Monaten mit automatischer (deBAKOM) und manueller Auswertung dargestellt. Für den Monat August wurden dabei lediglich Stufe 1 und Stufe 3 der Erkennung eingesetzt. Ab September auch Stufe 2. Wie der Tabelle zu entnehmen ist, zeigen die Pegel der beiden Auswertungen nur geringe Abweichungen. Bei der Anzahl der zugeordneten Ereignisse hingegen ergeben sich größere Diskrepanzen, die vor allem durch Ereignisse mit kleinen Pegeln nahe der Schwelle verursacht werden.

		Ld dB(A)	Ln dB(A)	Anzahl Tag	Anzahl Nacht
	deBAKOM	59,7	53,9	10617	1390
August 2010	manuell	59,2	53,2	8623	1124
	Differenz	0,5	0,7	1994	266
	deBAKOM	60	53,6	12744	1583
September 2010	manuell	59,8	53,4	11175	1504
	Differenz	0,2	0,2	1569	79
	deBAKOM	60,3	55,7	11994	1710
Oktober 2010	manuell	60,1	55,4	11012	1649
	Differenz	0,2	0,3	982	61
	deBAKOM	60,2	55,4	11635	1514
November 2010	manuell	59,9	55,2	10544	1466
	Differenz	0,3	0,2	1091	48
	deBAKOM	58,8	54,4	10013	1577
Dezember 2010	manuell	58,8	54,3	9479	1529
2010	Differenz	0	0,1	534	48

Abbildung 2: Vergleich der Messungen in Neu-Isenburg zwischen manueller und automatischer Auswertung. Für September wurde eine Musteranpassung vorgenommen, die dazu führte, dass die Differenz zwischen automatischer und manueller Erkennung kleiner wird.

Im folgenden Beispiel befand sich die Messanlage im Unterschied zum vorigen Szenario direkt an der Straße, so dass die Pegelaufzeichnungen eine Mischung aus Straßenverkehr und Fluglärm darstellen. In der folgenden Grafik sind für 2 Tage die anhand verschiedener Verfahren ermittelten Fluglärmpegel, so wie der errechnete Mittelungspegel gegenübergestellt.

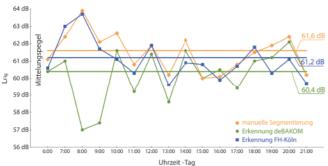
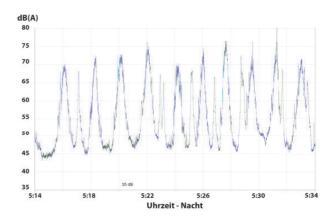



Abbildung 3: Auswertung der Messdaten. Vergleich von Methode 1, Methode 2 und manueller Auswertung. Oben: 23.10.08 (Tag ohne Regen) • Unten: 27.10.08 (Tag mit Regen). Ohne Regen ist die Abweichung der Mittelungspegel nur gering. Erhöht sich durch Regen jedoch das Hintergrundgeräusch, so wird die Erkennung schlechter und der Mittelungspegel weicht stärker ab.

Die folgenden Abbildungen zeigen den Pegel-Zeitverlauf für einen Zeitabschnitt mit wenig KFZ (5-6 Uhr) und einen Abschnitt mit deutlich mehr Fremdgeräuschen (15-16 Uhr). In Abbildung 4 (unten) ist deutlich zu erkennen, dass eine 'einfache' Zuordnung der Ereignisse – Fluglärm nicht mehr möglich ist.

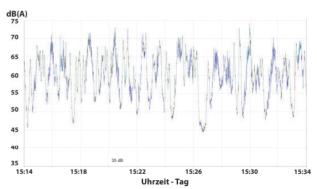


Abbildung 4: Pegelschrieb mit farblich markierter Erkennung der Klasse (blau: Flugzeug, grün: keine Erkennung) - Oben: Nacht • Unten: Tag

Diese Fluglärmereignisse sind auch manuell nicht ohne weiteres zu identifizieren, da es sich bei den Ereignissen um eine Mischung aus Fluglärm und anderen Lärmereignissen handelt. Dies ist mit ein Grund, weshalb in einzelnen Stunden zum Teil größere Abweichungen zwischen den Pegeln aus den drei Verfahren auftreten (Abb. 3). Da der Fluglärmpegel jedoch nicht auf Stundenbasis, sondern anhand eines Langzeitmittelungspegels über 6 Monate bestimmt wird, ist die automatische Erkennung geeignet, Fluglärmereignisse und deren Pegel zu ermitteln (Abb. 2).

Fazit

Bei dem Vergleich der vorgestellten Methoden sind nur geringe Abweichungen im Mittelungspegel zu beobachten. Betrachtet man den Pegel bei dem Vergleich der unterschiedlichen Methoden, so ergeben sich nur geringe Abweichungen beim Mittelungspegel. Allerdings gibt es eine größere Abweichung bei der Betrachtung der Anzahl der erkannten Ereignisse. Die Ursache für die Abweichung liegt maßgeblich an dem gleichzeitigen Auftreten verschiedener Geräuschklassen am Messort. Fluglärmerkennung ist jedoch nur ein Beispiel für die Mustererkennung. Die Verfahren sollen nicht nur für Fluglärm, sondern auch für andere Geräuschtypen (Straße, Bahn, Industrie etc.) eingesetzt werden.

Literatur

[1] D. Hemmer, C. Pörschmann (2010). Testsystem zum Vergleich verschiedener Parameter zur Verbesserung der Erkennungsleistung bei der Flugzeuggeräuschsidentifikation. In: Fortschritte der Akustik - DAGA 2010, DEGA e.V., D - Oldenburg, pp. 829-830